We present initial attempts to include the multi-dimensional nature of
radiation transport in hydrodynamical simulations of the small-scale structure
that arises from the line-driven instability in hot-star winds. Compared to
previous 1D or 2D models that assume a purely radial radiation force, we seek
additionally to treat the lateral momentum and transport of diffuse
line-radiation, initially here within a 2D context. A key incentive is to study
the damping effect of the associated diffuse line-drag on the dynamical
properties of the flow, focusing particularly on whether this might prevent
lateral break-up of shell structures at scales near the lateral Sobolev angle
of ca. 1o. We first explore nonlinear simulations that cast the
lateral diffuse force in the simple, local form of a parallel viscosity.
Second, to account for the lateral mixing of radiation associated with the
radial driving, we next explore models in which the radial force is azimuthally
smoothed over a chosen scale. Third, to account for both the lateral line-drag
and the lateral mixing in a more self-consistent way, we explore further a
method first proposed by Owocki (1999), which uses a restricted 3-ray approach
that combines a radial ray with two oblique rays set to have an impact
parameter p<R∗ within the stellar core. From numerical simulations,
we find that, compared to equivalent 1-ray simulations, the high-resolution
3-ray models show systematically a much higher lateral coherence.... (Full
abstract in paper)Comment: Accepted by A&A, 12 pages, 7 figures, 3 only shown in version
available at http://www.mpa-garching.mpg.de/~luc/2778.ps.g