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ABSTRACT

We present an analysis of observed trends and correlations between a large range of spectral and
photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase.
We define a common epoch for all SNe of 50 days post-explosion where the majority of the sample is
likely to be under similar physical conditions. Several correlation matrices are produced to search for
interesting trends between more than 30 distinct light-curve and spectral properties that characterize
the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly
declining light-curves, shorter plateau durations, and higher 5°Ni masses. Using a larger sample than
previous studies, we argue that ‘Pd’ - the plateau duration from the transition of the initial to ‘plateau’
decline rates to the end of the ‘plateau’ - is a better indicator of the hydrogen envelope mass than the
traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This
argument is supported by the fact that Pd also correlates with sz, the light-curve decline rate at late
times: lower Pd values correlate with larger s3 decline rates. Large s3 decline rates are likely related
to lower envelope masses that enables gamma-ray escape. We also find a significant anticorrelation
between Pd and so (the plateau decline rate), confirming the long standing hypothesis that faster
declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and
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therefore have shorter Pd values.
Keywords: supernovae: general -surveys -

1. INTRODUCTION

It is commonly accepted that Core-Collapse Su-
pernovae (CC-SNe) are produced by the explosion of
massive (> 8 M) stars. CC-SNe display a wide spectral
and photometric variety, leading to the basis of their
spectral classification. First order CC-SN classification
is based on the presence or absence of hydrogen within
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Electronic address: C.P.Gutierrez-Avendano@soton.ac.uk

I Millennium Institute of Astrophysics, Casilla 36-D, Santiago,
Chile

2 Departamento de Astronomia, Universidad de Chile, Casilla
36-D, Santiago, Chile

3 European Southern Observatory, Alonso de Cérdova 3107,
Casilla 19, Santiago, Chile

4 Department of Physics and Astronomy,
Southampton, Southampton, SO17 1BJ, UK

5 Center for Mathematical Modelling, University of Chile,
Beauchef 851, Santiago, Chile

6 CENTRA, Instituto Superior Técnico - Universidade de Lis-
boa, Portugal

7PITT PACC, Department of Physics and Astronomy, Univer-
sitg of Pittsburgh, Pittsburgh, PA 15260, USA

Unidad Mixta Internacional Franco-Chilena de Astronomia

(CNRS UMI 3386), Departamento de Astronomia, Universidad de
Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile

9 Department of Physics and Astronomy, Aarhus University, Ny
Munkegade 120, DK-8000 Aarhus C, Denmark

10 Carnegie Observatories, Las Campanas Observatory, Casilla
601, La Serena, Chile

i Facultad de Ciencias Astronémicas y Geofisicas, Universidad
Nacional de La Plata, Instituto de Astrofisica de La Plata (IALP),
CONICET, Paseo del Bosque SN, BI900FWA La Plata, Argentina

University of

SN spectra. SNe where hydrogen is clearly visible
are called SNe II, while those without these features
correspond to SNe Ib/c (Minkowski 1941; Filippenko
1997).

Initially, SNe IT were classified according to the shape
of the light curve: SNe with a faster decline rate are
called SNe IIL, while SNe with almost constant luminos-
ity for several months were called SNe IIP (Barbon et al.
1979). However, years later, two new classes of SNe II
emerged: SNe IIn and SNe IIb. SNe IIn show narrow
emission lines in their spectra, possibly due to steady
interaction with a circumstellar medium (CSM; Schlegel
1990), while SNe IIb are thought to be transitional
events between SNe II and SNe Ib (Filippenko et al.
1993). The overall properties of SNe IIn and SNe ITb
are sufficiently distinct from ‘normal’ SNe II, that we
do not include them for study, and they are no longer
discussed in this paper.

With ever increasing numbers of SNe, new sub-classes
have appeared. Blanco et al. (1987); Menzies et al.
(1987); Hamuy et al. (1988); Phillips et al. (1988) and
Suntzeff et al. (1988) presented analysis of SN 1987A,
an object that exhibited typical characteristics of the
SN II spectra, but a peculiar light curve. With this
SN the 87A-like objects were introduced. Examples
of these SNe can be found in Pastorello et al. (2005),
Pastorello et al. (2012), and Taddia et al. (2013)'2.
Later, Pastorello et al. (2004) and more recently Spiro
et al. (2014) studied the properties of low luminosity
SNe II, which additionally have narrow spectral lines
(indicating low expansion velocities). On the other

12 As the SN 87A-like objects have different light-curve proper-
ties than ‘normal’ SNe II, we also exclude them from our analysis.
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hand, Inserra et al. (2013) analyzed a group of luminous
SNe II. Lately, intermediate luminosity SNe have been
also studied, supporting the wide diversity in SNe II
(e.g. Roy et al. 2011; Takdts et al. 2014).

Red Super-Giant (RSG) stars with zero-age main-
sequence mass > 8 My have generally been assumed as
the progenitors of SNe II, with hydrodynamical mod-
elling supporting this hypothesis (Chevalier 1976). In
recent years, a significant number of direct identifications
of the progenitor stars of nearby SNe IIP (e.g. Van Dyk
et al. 2003; Smartt et al. 2004, 2009; Maund & Smartt
2005; Smartt 2015) suggest that RSG stars with masses
of 8 - 18 Mg are their progenitors, supporting initial
assumptions. There is little observational constraint on
the progenitor mass range of SNe IIL because only two
direct identifications have been obtained (Elias-Rosa
et al. 2010, 2011, but see Maund et al. 2015), however
these do provide some evidence in favor of higher mass
progenitors. Nevertheless, a recent analysis done by
Valenti et al. (2016) with the light curves and spectra of
16 SNe II did not find any evidence for progenitor mass
differences between SNe of different decline rates.

While direct detections of progenitors have con-
strained a relatively narrow mass range for SNe II,
the same SNe show significant differences in their final
explosive displays (e.g. SN 2004et, a normal SNe II, and
SN 2008bk, a low luminosity event). It must therefore
be that differences in stellar evolutionary processes
leave the progenitors in different final states (e.g. the
extent of the hydrogen envelope, the progenitor radius
at explosion, the CSM) or explode with e.g. different
energies, in order to produce the diversity we observe.

Theoretical studies have suggested that progenitors
that explode with smaller hydrogen envelope masses
produce faster declining light curves (SNe IIL), together
with shorter or non-existent ‘plateaus’ (e.g. Litvinova
& Nadezhin 1983; Bartunov & Blinnikov 1992; Popov
1993; Morozova et al. 2015; Moriya et al. 2016). An
alternative study presented by Kasen & Woosley (2009)
shows that a change in the explosion energy leads
to a range of luminosities, velocities, and light curve
durations. That is to say, higher explosion energies
result in brighter events with higher expansion velocities
and shorter plateaus. They also found that an increasing
synthesised °SNi mass extends the length of the plateau
(see also Bersten 2013). Meanwhile, Dessart et al.
(2013b) using radiative-transfer models explored the
properties of SNe II changing the physical parameters
of the progenitor and/or the explosion (e.g. metallicity,
explosion energy, radius). They found that the radius
has an influence on the temperature/ionisation/color
evolution (more compact objects cool and recombine
faster) and in the plateau brightness, while a variation in
the explosion energy leads to a variation of the plateau
brightness and the plateau duration, consistent with
Kasen & Woosley (2009).

To quantify the spectral and photometric diversity, a
number of statistical studies of SNe II have been pub-
lished. Patat et al. (1994) characterized the properties
of 57 SNe II using the maximum B-band magnitude,
the color at maximum and the ratio of emission to
absorption (e/a) in H,. They showed that faster declin-
ing events are more luminous, have shallower P-Cygni
profiles and are bluer than SNe IIP. The majority of

more recent studies have focused on SNe ITP. Hamuy
et al. (2002) analyzed 17 SNe ITP and found that SNe
with brighter plateaus have higher expansion velocities
(also seen in the models of Bersten 2013. Hamuy
(2003) concluded that more massive SN IIP progenitors
produce more energetic explosions and in turn produce
more nickel. Similar results were found by Pastorello
et al. (2003) and more recently by Faran et al. (2014D).
The only exception to these works about SNe IIP was
published by Faran et al. (2014a), who analyzed a
sample of SNe IIL. They found that faster declining
SNe II (SNe IIL) are brighter than slower declining
events (SNe IIP), confirming previous results.

Gutiérrez et al. (2014) and Anderson et al. (2014a)
using a large sample of SNe II, analyzed the dominant
line in SNe II, the H, P-Cygni profile. Gutiérrez et al.
(2014) using a sample of 52 SNe II (a sub-sample of
that which we present here) showed that SNe with
smaller values of a/e (the inverse of the ratio previously
discussed by Patat et al. 1994) are brighter and have
faster declining light curves. They concluded that these
relationships and the diversity of a/e can be understood
in terms of a varying hydrogen envelope mass at explo-
sion epoch, together with the possibility of an influence
of circumstellar interaction. Meanwhile, Anderson et al.
(2014a) analyzed the blueshifted offset in the emission
peaks of H, of 95 SNe II. Through comparison to
spectral modelling (Dessart & Hillier 2005; Dessart
et al. 2013a), they argue that this behaviour is a natural
consequence of the distinct density profiles found in SN
ejecta.

Using a sample of 117 SNe II, Anderson et al. (2014b)
(hereafter A14) studied the V-band light curve diversity
of these objects. They found that SNe II with shorter
plateau duration (Pd) exhibit faster decline rates (sq in
their nomenclature). They concluded that the envelope
mass at the epoch of explosion is the dominant physical
parameter that explains this observed diversity. Similar
results were found by Sanders et al. (2015), Valenti
et al. (2016) and Galbany et al. (2016). They also found
that SNe ITP and SNe IIL show a continuum in their
photometric properties and it is not suitable to isolate
them in two distinct classes or types.

In addition to these results, A14 found relatively high
radioactive decline rates (s3) for a significant number
of SNe. In %Ni powered light curves at late times,
full gamma-ray and positron trapping yields a decline
rate s3 of 0.98mag per 100 days. Higher decline rates
than this value therefore suggest less efficient trapping
of gamma-ray emission (or much greater explosion
energies), suggesting lower mass ejecta for these SNe II.

The previous discussion shows how numerous relations
between observed photometric and spectral parameters
have been used to understand the SN II phenomenon.
However, there are many additional parameters that
have not been included in this discussion to date. Inclu-
sion of additional parameters can aid in furthering our
understanding of the underlying physics of SNe II. This
motivates our current work where we study a sample of
almost 1000 optical-wavelength spectra of > 100 SNe II.
To that aim, we have divided the analysis into two
papers. In Gutierrez et al. (2017) (hereafter Paper I)
we present the full description of the observations, data
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reduction techniques, and the spectral properties. We
also discuss the spectral matching technique to estimate
the explosion epochs, the analysis of the spectral line
evolution and the nature of the extra absorption com-
ponent on the blue side of H,.

Here, in this paper II we analyse the correlations
between different spectral parameters defined to explore
the diversity of SNe II, together with their correlation
with previously defined photometric measurements.
Expansion velocities, pseudo-equivalent widths (pEWSs),
the ratio of absorption to emission (a/e) of the H,
P-Cygni profile, and velocity decline rates are used to
search for correlations with photometric parameters and
between other spectral properties. We analyze spectral
correlations and determine the most important proper-
ties to compare them with the photometric parameters.
Our overall aim is to search for trends between different
measured parameters, and then attempt to link these to
the underlying physical properties of SN II progenitors.

The paper is organized as follows. Section 2 briefly
describes the data employed for this analysis. In Section
3 we describe our measurement techniques. An overall
current physical understanding of our different observed
parameters is presented in Section 4. The full analysis
is presented in Section 5. We discuss our results in
Section 6 and present our conclusions in Section 7.

2. DATA

The data used in this analysis were published in A14
and Paper I. The details of the spectroscopic and pho-
tometric observations and reductions can be found in
the mentioned studies. On average we have 7 spectra
per SN, which are analysed together with their V-band
light-curves. Details of these SNe are available in Al4,
Anderson et al. (2014a), Gutiérrez et al. (2014), Galbany
et al. (2016) and Paper 1.

A small number of SNe presented in Paper I are
excluded from this work because they have insuffi-
cient spectral and/or photometric data to be useful
(SNe 1988A, 1990E, 1992ad, 1992am, 1993A, 1999eg,
2002ew, 2003dq, 2004dy, 2005dw, 2005es, 2005K,
2005me, 2006bc, 2007Z, 2008F, 2009W).

3. MEASUREMENTS

The evolution of SNe II can be studied according
to both spectral and photometric behaviour. At early
phases the spectra exhibit the Balmer lines (H,, Hpg,
H,, Hs), and He 1 A\5876 A. With time, the iron group
lines start to appear and to dominate the region between
4000 and 6000 A. The Ca II triplet, Na I D, and O I
also emerge. The light curve at the beginning shows a
fast rise to peak brightness, followed by a slight decline,
which is powered by the release of shock deposited en-
ergy. Around ~ 30 days post-explosion a plateau arises
from the fact that the expansion of the ejecta at the
photosphere compensates for the drop in optical depth.
When the photospheric phase ends (around 80-120 days
post explosion, A14), the transition to the nebular phase
starts and the brightness drops. Once this happens, the
radioactive tail phase starts. This phase is powered by
the radioactive decay of °Co to *Fe. Later than ~ 200
days, the spectra are dominated by forbidden lines, which

are formed in the inner part of the ejecta. Much diver-
sity is observed both in spectra and photometry, which
suggests differences in the properties of the progenitor
star and the explosion.

To study the diversity within SNe IT we use the spectral
and photometric parameters defined in Gutiérrez et al.
(2014) and Al4. We also define a number of additional
parameters below. These measurements are chosen to
enable a full characterisation of the diversity of SN II
V-band light curves and optical spectra.

3.1. Spectral measurements

Before proceeding with our spectral analysis, below we
summarise the parameters we use, as defined in Paper I:

e v: corresponds to the expansion velocity. It is mea-
sured from the minimum flux of the absorption
component of P-Cygni line profile. In this anal-
ysis we measure this parameter for eleven features
in the photospheric phase: H,, Hg, Fe II \4924,
Fe 11 A5018, Fe II A\5169, Sc II/Fe 1I A5531, Sc II
multiplet A5663, Na I D, Ba IT A6142, Sc II \6247,
and O I A7774. In the case of H,, the velocity was
also derived using the full-width-at-half-maximum
(FWHM) of the emission component.

o Av(Hp): defined as the rate of change of the expan-
sion velocity of the Hg feature. This parameter was
measured at 5 distinct intervals (see Paper 1), how-
ever here we only use the interval 50 < ¢ < 80 days,
as this shows the highest correlation with other pa-
rameters.

e Avel: defined as the velocity difference between H,,
and Fe IT A5018, and Na I D and Fe IT A\5018.

e pPEW: corresponds to the absorption/emission
strength of a particular line. Here, we measure
the absolute value of pEW for the same features
mentioned above.

e a/e: defined as the flux ratio of the absorption to
emission component of H, P-Cygni profile. This
ratio is the inverse of that presented by Patat et al.
(1994). We propose a/e as this deals better with
weak absorption values that are shown by a number
of SNe IT in our sample.

While measurements were performed in all epochs at
which we obtained spectra, we choose to define common
epochs between SNe at 30, 50 and 80 days post explo-
sion. An interpolation and extrapolation is used to ob-
tain parameter values at these epochs. The values ob-
tained by the interpolation are used when two available
spectra are present £15 days around the common epoch,
while the values from the extrapolation are used at +10
days. These intervals were chosen as they increase the
strength of observed correlations. Using bigger intervals
deteriorates the correlations because the polynomial does
not produce reliable results in some cases (particularly
for the pEW). At +15 and £10 days for interpolation
and extrapolation, respectively, the results do not show
a significant change compared to those obtained using a
smaller interval. Hence, our choice of intervals is justi-
fied. To estimate the velocity at a common epoch, we
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do an interpolation/extrapolation using a power law fit.
For the pEW we use a low order (first or second) poly-
nomial fit. Power law fits were found to produce sat-
isfactory results in the case of velocity measurements,
however for pEWs we found that low-order polynomials
were required. For this parameter we used a low order
polynomial and determined the best fit using the nor-
malized root mean square (rms) of different orders. The
errors of each measurement were obtained with the rms
error fit. In summary, we are able to use spectral param-
eter values in 88, 84, and 59 SNe at 30, 50 and 80 days,
respectively.

3.2. Photometric measurements

Historical separation of SNe II into distinct classes was
based on photometric differences in e.g. decline rates
and absolute magnitudes. Hence it is essential to include
photometric parameters in our analysis for a full under-
standing of observed correlations and their implications
for SN II physics. Here, we use the V-band photomet-
ric parameters already defined (and measured) in Al4,
which we now summarise:

e {o: corresponds to the explosion epoch (see Paper
I for more details of their estimation).

® ti.qn: determined as the transition between the ini-
tial decline (s1) and the plateau decline (s3).

® t.,q: corresponds to the end of the optically thick
phase (i.e., the end of the plateau phase).

e tpp: is the mid point of the transition from plateau
to radioactive tail.

e OPTd: is the duration of the optically thick phase
and is equal to teng — to.

e Pd: is the plateau duration, defined between ty.qy,
and tepg-

® M,,q.: defined as the initial peak in the V—band
light-curve.

e M.,q: defined as the absolute V —band magnitude
measured 30 days before tpr.

® M, defined as the absolute V —band magnitude
measured 30 days after tpr.

o s1: defined as the decline rate (V—band magni-
tudes per 100 days) of steeper slope of the light-
curve.

e sy: defined as the decline rate (V—band magni-
tudes per 100 days) of the second, shallower slope
in the light curve.

e s3: defined as the linear decline rate (V' —band mag-
nitudes per 100 days) of the slope in the radioactive
tail part.

o %°Ni mass: corresponds to the mass of radioactive
nickel synthesised in the explosion. (A14 for exact
details of how this was estimated).

Initial values for these parameters can be found in Ta-
ble 5 in Al4, however it should be noted that in this
work some of these parameters have been updated: t;.qn,
OPTd, Pd, Mpaz, Mend, Miqir, s1 and so. In the case
of magnitudes it was found that stronger correlations
were obtained with other parameters before any extinc-
tion corrections were made. This suggests that a) in the
vast majority of cases host galaxy extinction is relatively
small, and b) when we do make extinction corrections
(using the absorption Na I D in A14), such corrections
are not particularly accurate. Therefore, all magnitudes
are being used without host galaxy extinction correc-
tions. For t4,.4n, we used the F-test to decide whether
a one or two slope fit was better; Al4 used the BIC cri-
terion. The main difference resides in how the F-test
penalises the number of parameters of each model (more
details in Galbany et al., in prep.). This method in-
creases the number of SNe with .4, available, and in
turn this increases the number of SNe for which we can
define s; and Pd. A visual check of those SNe II show-
ing tirans using both the F-test and the BIC criterion
was performed, and this gives us confidence in the use of
the former in this work. All values used in the current
analysis are listed in Table 1.

Besides the parameters defined by A14 we include two
more parameters:

e A(B — V): defined as the color gradient. We
measure this parameter in three different ranges:
10 <t <20d, 10 <t < 30d, and 20 < ¢t < 50d.
Color gradients are calculated by fitting a low-
order polynomial to color curves and then taking
the color from the fit at each epoch and calculat-
ing the gradient, A(B — V') by simply subtracting
one epoch color from the other and dividing by the
number of days of the interval.

e (Cd: corresponds to the cooling phase durations
(Cd), defined between tg and tipan.-

Figure 1 presents an example light curve indicating all
the above defined V —band parameters.

4. OBSERVED PARAMETERS AND THEIR PHYSICAL
IMPLICATIONS

The basic properties of the progenitor stars and explo-
sion that have a significant influence on SN II diversity
are the explosion energy (E), ejecta mass (M), pre-
supernova radius (Rp), the ®°Ni mass, and progenitor
metallicity (with many of these parameters likely to be
directly linked to the Zero Age Main Sequence, ZAMS,
mass). Theoretical works (e.g. Young 2004; Kasen &
Woosley 2009; Dessart et al. 2013a) have studied how
variations of these parameters influence SN II light curves
and spectra. Specifically, such studies have directly
linked observed parameters such as luminosities, expan-
sion velocities and the duration of the plateau to the
above physical progenitor properties.

The most commonly used parameter to link observed
SN properties to progenitor characteristics has been the
duration of the plateau. It has been associated to the hy-
drogen envelope mass of the progenitor at the moment
of the explosion. Theoretical models (e.g. Litvinova &
Nadezhin 1983; Popov 1993; Dessart et al. 2010a; Mo-
rozova et al. 2015; Moriya et al. 2016) have shown that
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Figure 1. Example of the light-curve parameters measured for
each SN within the sample in the V—band. Observed absolute
magnitude at peak, Mmaz, Menqg and My, are shown in blue,
as applied to the dummy data points (yellow stars) of a SN II.
The positions of the three measured slopes, s1 , s2, and s3, are
shown in red. The cooling duration (Cd), plateau duration (Pd)
and optically thick phase duration (OPTd), are indicated in green.
Four time epochs are labeled: tg, the explosion epoch; ttran, the
transition from sj to s2; teng, the end of the optically thick phase;
and t p, the mid point of the transition from plateau to radioactive
tail.

the plateau duration is a good indicator of the hydro-
gen envelope mass in the direction that larger envelope
masses produce longer duration plateaus. This can be
understood as the hydrogen recombination wave taking
a longer time to travel back through the ionised ejecta in
SNe with a larger hydrogen envelope. Traditionally, au-
thors have referred to the ‘plateau duration’ as the time
from explosion to the epoch when each SN starts to tran-
sition to the nebular phase. However, such a definition
then includes phases that are powered by different phys-
ical mechanisms (early-time light curves are powered by
the release of shock deposited energy, while later phases
during the true plateau are powered by hydrogen recom-
bination (e.g. Grassberg et al. 1971; Chevalier 1976; Falk
& Arnett 1977). In Al4 two time durations were defined:
OPTd, the optically thick phase duration, and Pd the
plateau duration. The former is equivalent to the tradi-
tional definition of the plateau duration from explosion
to the end of the plateau, while the latter is defined from
the inflection point in the s; and s, decline rates to the
end of the plateau. The newly defined Pd value should
thus more accurately scale with hydrogen envelope mass,
while OPTd includes both effects of changing the enve-
lope mass together with radius differences affecting the
time taking for the light-curve to reach the hydrogen re-
combination powered s; decline rate. Later we provide
additional evidence and arguments for this interpreta-
tion: overall correlations are stronger between Pd and
other SN II measurements (particularly those other pa-
rameters linked to the envelope mass) than OPTd.

In addition to Pd, it was argued in Al14 that decline
rates during the radioactive phase, s3, can also give an
indication of the ejecta mass. The expected s3 decline
rate is 0.98 mag per 100 days assuming full trapping of
the radioactive emission from 56Co decay (Woosley et al.
1989).

The expansion velocity and luminosity of SNe II are
both set by the explosion energy (Kasen & Woosley
2009 and Bersten 2013): more energetic explosions pro-
duce higher photospheric velocities, and in turn, brighter
events. These results have been showed observationally
by Hamuy & Pinto (2002); Hamuy (2003).

More recently, Dessart et al. (2010b); Dessart et al.
(2013a) showed that in SNe with small progenitor radii,
the recombination phase starts earlier. This would imply
that the phase between the explosion and 4.4y (cooling
duration phase, Cd) is shorter in these SNe. Hence, we
may expect a relation between Cd and progenitor ra-
dius. Moreover, Morozova et al. (2016) found that the
early properties of the light curve are sensitive to the
progenitor radius, which implies that the rise time has
a relation with the radius at the time of the explosion.
Gonzélez-Gaitan et al. (2015) using a large sample of ob-
served SNe II, concluded that SNe II progenitor radii are
relatively small. We note however the recent results of
Yaron et al. (2017), Morozova et al. (2017), Moriya et al.
(2017) and Dessart et al. (2017). These investigations
have provided evidence for and shown the effect of pre-
viously unaccounted for material close to the progenitor
star. The interaction of the SN ejecta with such mate-
rial may thus complicate the relation between early-time
observations and progenitor radius.

In summary we expect that the hydrogen envelope mass
is directly related with Pd, s3; the explosion energy
with the expansion velocities (vel), and the luminosities
(Miazs Mena); and the radius of the progenitor would
have some influence in Cd.

5. RESULTS

In this section we investigate the spectral and pho-
tometric diversity of SNe II through correlations. Here
we present the statistics of these correlations and their
respective figures. As stated above, the spectral mea-
surements were performed in the phases where the data
were available, however to characterize this diversity, the
analysis is done at 30, 50 and 80 days with respect to
the explosion epoch. In Table 2 we can see the average
of the correlations for each parameter at 30, 50 and 80
days. The mean of these correlations shows a value of
0.323, 0.364 and 0.356 for each epoch, thus the following
analysis is performed at 50 days, where more spectral
measurements are available and the mean is higher. In
Tables 3, and 4 the measured spectral parameters at 50
days are listed, while in Table 1 we present the photo-
metric parameters.

5.1. Spectral correlations in the photospheric phase

We analyze the spectral properties of SNe II, focus-
ing on correlations between pEWSs, expansion velocities,
velocity decline rate, and velocity differences. Figure 2
shows the correlation matrix of the velocity measure-
ments at 50 days obtained by estimating the Pearson cor-
relation coefficient. Correlation coefficients are displayed
in color: darkest colors (green and purple) represent the
highest correlation found with the Pearson correlation
test (-1 and 1, respectively), while white colors (0) mean
no correlation. These colors are presented in the lower
triangle, while the upper triangle shows the Pearson cor-
relation value (p). It is generally considered that corre-
lation coefficients between 0 and 0.19 represent close to
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Figure 2. Correlation matrix of the individual velocity measure-
ments at 50 days. Colors indicate the Pearson correlation coeffi-
cient p. The diagonal middle line shows the name of the parameter:
Heq from FWHM and from the minimum absorption flux, Hg, Fe IT
24924, Fe 11 A5018, Fe IT A5169, Sc 1I/Fe 1I A5531, Sc II M A\5663,
Nal D, Ba II A6142, Sc IT A\6247, and O I A7774 velocities.

zero correlation, 0.2-0.39 weak, 0.4-0.59 moderate, 0.6-
0.89 strong, and 0.8-1.0 very strong (Evans 1996), while
also noting the statistical significance of these correlation
coefficients in many cases. We will use these descriptions
for the following discussion. As shown in Figure 2, all ve-
locities strongly correlate positively with each other, as
we would expect for an homologous expansion (v o r).
Taking an average, v(Sc II/Fe II) A5531, v(O I) A7774
and v(Sc II) A6247 show the highest correlations with
the other parameters, with values of 0.887, 0.883 and
0.875, respectively, while Fe II A\4924 shows the lowest
(0.714). The Sc II A6247 line velocities correlate strongly
with Fe IT A5018 and Sc II/Fe II A5531, with a value of
p=0.94 and p = 0.95. It is important to note that while
the velocities all correlate, they are offset. In general,
the differences in the velocities are related to the optical
depth for each line and the proximity of the line forming
region to the photosphere. As H, displays the highest
velocities, it is mostly formed in the outer shell of the
ejecta and its optical depth is much larger than the Fe II
lines, which are forming near to the photosphere.
Figure 3 shows the correlation matrix of the pEWs
measurements at 50 days. Searching for correlations of
pEWSs with each other, we find that Sc II/Fe II A\5531
seems to be the dominant parameter to correlate with
all the other pEWSs (on average 0.404), while the pEW
of H, absorption component shows very weak correla-
tions with other pEWs. The strongest correlations are
displayed by the iron-group lines with each other. We can
see moderate correlations between the pEW of O 1T A7774
and Hg. In the case of a/e we find a moderate correla-
tion only with Fe IT A4924 (p = 0.43) and anticorrelation
with pEW of H,, emission (p = —0.43). While Hg shows
a weak correlation with the H, absorption component
(p = 0.3), the correlation with the H, emission compo-
nent is strong, with a p = 0.78. The lack of correlation
between H, and Hg absorption features could be due to
a)blending effects of Fe II, Sc II and Ba II lines with Hg,
and/or b) the effects of Cachito (Paper I) on the profile

Q}Q@\‘ 021 03 029 04 022 0.27 0.12 0.077 0.22 0.19 0.05 0.28
0.8

D
&@ 0.78 -0.52-0.099 0.5 -0.19 0.12 043 -0.22 -0.19 0.36 -0.43

0.6

D
Q}'\\ -0.54 -0.13 0.52 -0.16 0.23 0.33 -0.21 -0.15 0.5 -0.19
&

$(<Q 0.63 -0.18 0.56 0.2 -0.036 0.54 0.47 -0.53 0.43 04

0.58 0.18 0.48 0.51 -0.32 0.31

0.2
0.66 047 0.21 0.37 0.32-0.002

0.32 0.62 0.69 -0.14 0.31 0.0
S
0.44 042 0.51 0.031 0.16
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Figure 3. Correlation matrix of the individual pEW measure-
ments at 50 days. Colors indicate the Pearson correlation coeffi-
cient p. The diagonal middle line shows the name of the parameter:
pEW(H,) of absorption component, pEW(Hg) of emission compo-
nent, pEW(Hg), pEW (Fe 11 A4924), pEW (Fe 11 A5018), pEW (Fe 11
A5169), pEW (Sc 11 /Fe II A5531), pEW (Sc II M A\5663), pEW(Na I
D), pEW(Ba II A\6142), pEW(Sc II A6247), pEW(O I A7774) and
ale.

of H,.

Figures 4, 5, and 6, show the relations between the
H,, Fe II A\5169, and Na I D velocities and the pEWs
for the 11 features explained above at 50 days. Checking
these correlations we see that velocities correlate posi-
tively with Balmer and Na I D lines, but negatively with
Fe 11 lines. For H,, we present the pEW of the absorption
and emission component in the first two panels, respec-
tively. In the three figures are shown five objects with the
lowest velocities and smallest pEW values. Three of these
SNe show signs of interaction (narrow emision lines) at
early times (SN 2008bm, 2009au and 2009bu, these SNe
also display abnormally low velocities for their bright-
ness). The other two SNe are SN 2008br and SN 2002gd.
In those panels plotting pEWSs of Fe 1T A4924, Sc 11/Fe 11
A5531, Sc II A5663, Ba II A6142, and Sc II A6247, one can
see that there are many SNe with pEW = 0. In these
spectra we do not detect these lines.

In Figure 4 we can see that the H, velocities do not
show correlation with pEW(H,,) of the absorption com-
ponent, pEW(Fe II A5169), pEW(Sc 1I/Fe II A5531),
pEW(Sc II multiplet), pEW(Na I D), pEW(Ba I1 A\6142),
and pEW(Sc II A6247). The strongest correlations are
shown with pEW (H,) of the emission component, Hg,
and anticorrelations with Fe IT A4924, and Fe IT A\5018.
Figures 5 and 6 show that Fe II A5169 and Na I D ve-
locities present more scatter in their relations than those
shown by H, velocities.

The expansion velocities with Av(Hg) show anticorre-
lations, which are stronger at late epochs (between 50
and 80 days) than at early phases (15 to 30 days, 15 to
50 days, and 30 to 50 days). Meanwhile, Avel(H,—Fe II
A5018) and Awvel(Na I D—Fe IT A5018) show correlations
with the expansion velocities at 50 days (see Figure 7).

5.2. Spectroscopic and photometric properties
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Figure 4. Relations between H, velocities and the pEWs of H, of absorption and emission component, Hg, Fe IT 4924, Fe II \5018,
Fe 11 A5169, Sc II/Fe IT A5531, Sc II multiplet, Na I D, Ba IT A6142, Sc II A\6247, and O I A7774. On the top left of each panel the spectral

feature name is displayed, together with the Pearson correlation value.

We now present a comparison of spectroscopic and
photometric properties of SNe II. While we have defined
and measured 31 spectroscopic and 13 photometric pa-
rameters, here we choose a smaller number of param-
eters to focus on and search for correlations between
them. Thus, we employ 14 spectral and 11 photomet-
ric parameters: v(H,) obtained from the FWHM of the
emission component, v(Hg), v(Fe II 5018), v(Fe II 5169),
U(Na I D)7 pEW(Ha(abs))7 pEW(Ha(emis))a pEW(Hﬁ))7
pEW (Fe II 5018), pEW(Fe II 5169), pEW(Na I D), a/e,
Av(Hg) in a range of 50 < ¢ < 80d, Avel(H,—Fe II
5018), Avel(Na I D—Fe 11 5018), OPTd, Pd, Cd, M4,
Mend, Miair, S1, S2, 83, A(B — V) in a range of 10 <t <
30 d, and the °Ni mass.

Figure 7 shows the correlation matrix of the spectro-
scopic parameters (obtained at 50 days from explosion)
and photometric properties. Although photometric cor-
relations have been shown in previous works (e.g. Al4,
Valenti et al. 2016), the incorporation of numerous spec-
tral parameters can aid in furthering our understanding
of the link between observed parameters and underlying
SN II physics. As in the previous matrix of correlation,
darkest colors indicate higher correlation and white col-
ors, no correlation.

Focusing on the photometric correlations, one can see
that many of these are stronger than in Al4. As dis-

cussed previously, this is because some parameters have
been remeasured with new techniques (Galbany et al. in
prep). Interestingly, the number of SNe II with mea-
sured values of both Pd and s3 show an increase from 4
in Al4 to 8 in this work. As explained above, both pa-
rameters can give us an idea of the of hydrogen envelope
mass at the moment of explosion, thus some relation is
expected. Figure 8 shows an evident trend between both
parameters, with a correlation coefficient of p = —0.857
(although we note the low number of SNe). SNe II with
smaller Pd have higher s3 decline rates, providing fur-
ther evidence of a dominant role in defining light-curve
morphology of the hydrogen envelope mass, while also
providing further support for the use of Pd and s3 as
envelope mass indicators (given their relatively strong
correlation).

From Figure 7 we also can see that Pd has a moderate
correlation with velocities. Although we find a strong
correlation between Pd and °Ni mass, in agreement to
the theoretical predictions (e.g. Kasen & Woosley 2009),
we are not in a position to support this result because the
correlation is produced only with three points. However,
when we include the lower limits for the ®Ni mass, the
correlation disappears (see top panel in Figure 9). In
general, the correlations between the 5Ni mass and all
other parameters decrease when we use the lower limits.
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Figure 5. Same as Figure 4 but for Fe II 5169 velocities.

In the bottom panel of the same plot (Figure 9) it is
possible to see how the scatter increases using the these
values. The correlation goes from p = —0.82 to p =
—0.60. The fact that correlations become weaker when
using lower °*Ni mass limits suggests that one should be
careful analysing such masses when insufficient data are
available for their estimation.

Continuing the analysis of Pd, we can see that it has
a moderate correlation with pEW(H,,) of the absorption
component and strong correlation with a/e. The correla-
tion coefficients are p = 0.45 and p = 0.61, respectively.
In Figure 10 we present these correlations together with
the best fit line obtained using the linmix_err!? pack-
age (Kelly 2007) and the variance with respect to the
fit line. The trend shows that SNe with shorter Pd val-
ues are brighter, have faster declining light curves, lower
pEW(H,,) of the absorption component and a/e values,
and higher velocities, however the scatter is large. In
many cases this scatter is significantly larger than the
that which could be ascribed to the errors on individ-
ual data points. This suggests that this scatter is due
to differing underlying physics driving diversity in dif-
ferent parameters plotted on each axis. For example,
while we argue here that Pd is a good indicator of the
hydrogen envelope mass, theory also predicts this pa-

13 A Bayesian approach to linear regression with errors in both
X and Y.

rameter to be influenced by the °°Ni mass (Kasen &
Woosley 2009). Meanwhile, SN luminosities and veloc-
ities will be affected by both explosion energy and the
ejecta/envelope mass. Interaction of the SN ejecta with
CSM material at early times (e.g. Morozova et al. 2017;
Moriya et al. 2017; Dessart et al. 2017) may also play a
role in producing dispersion in our presented trends.

The fact that we see a significant anti-correlation be-
tween Pd and ss is in line with historical understanding
of the nature of fast declining SNe II. If Pd is an indi-
cator of the extent of the hydrogen envelope, then it fol-
lows that faster declining SNe II have a smaller hydrogen
envelope at the epoch of explosion, consistent with pre-
vious theoretical predictions (e.g Popov 1993; Litvinova
& Nadezhin 1983; Bartunov & Blinnikov 1992; Moriya
et al. 2016).

In Figure 11 we test the correlation found by Hamuy
& Pinto (2002) between the magnitude and the pho-
tospheric expansion velocity. Unlike Hamuy & Pinto
(2002), who only used SNe IIP and the My in the middle
of the plateau, we use all our SN II sample (no distinc-
tion between SNe ITP and SNe IIL) and the magnitude
at different phases: at maximum (M;,,.), at the end
of the plateau (Mg,4) and at the radioactive tail phase
(Mtqi). We can see that brighter events (in all phases)
display higher expansion velocities, confirming the re-
sult of Hamuy & Pinto (2002). The correlations between
Fe 1I A\5169 velocity (a proxy of the photospheric ve-
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Figure 6. Same as Figure 4 but for Na I D velocities.

locity) at 50 days and luminosity during the optically
thick phase are moderate (p = —0.54 with M,,, and
p = —0.45 with M.,4), and strong (p = —0.62) in the
radioactive tail phase. However, we again note the out-
liers in these figures, where the correlation appears much
stronger when removing these events (the outliers are
mainly the same SNe discussed previously that show ab-
normal spectral properties). Interestingly, correlations
are higher between spectral velocities and M4, than
with Menq (the Standardized Candle Method, SCM, is
generally applied using a magnitude during the plateau,
more similar to Me,4). Analysing the variance along the
best fit line, we find that the dispersion in velocity is
larger in brighter SNe. Although the magnitudes and
the expansion velocities are both directly related with
the explosion energy, this scatter could suggest an extra
influence by an external parameter. In the three main
outliers in this plot we observe signs of weak interac-
tion at early times (see spectra presented in Paper I). In
these three obvious cases, but also in other more ‘normal’
SNe II, interaction could play a role in influencing both
the magnitudes and velocities observed. CSM interac-
tion is likely to produce more dispersion within brighter
SNe IT as it will generally increase the early-time lumi-
nosity while possible decreasing velocities, hence pushing
SNe IT away from the classic magnitude-velocity relation.
In addition, the unaccounted for effects of host galaxy
reddenning will produce additional dispersion.

The expansion velocities show a strong correlation with
°6Ni mass (see Figure 12). This suggests that more en-
ergetic explosions produce more %6Ni. Additionally, the
luminosities have a very strong correlation with the 56Ni
mass, which supports the results obtained by Hamuy
(2003); Pejcha & Prieto (2015a,b) and more recently by
Miller et al. (2017). It is possible to see that these three
parameters (luminosities, velocities and 5°Ni mass) are
related and they can be explained through a correlation
of both parameters with explosion energy: more ener-
getic explosions produce brighter SNe with faster veloci-
ties (as shown in the models of Dessart et al. 2010a). For
those correlations that we do not plot, the reader can see
the strength of correlation in Figure 7.

Figure 13 presents correlations between M,,,,, and the
pEWSs of H,,, Fe I1 5018, and Na I D. We observe a weak
correlation with the pEW(H,) absorption component, a
moderate (p = 0.54) correlation with pEW (Fe II 5018),
and no correlations with pEW(Na I D).

In Figure 14 we repeat the correlations presented by
A14, which show that a faster declining SN at one epoch
is generally also a fast decliner at other epochs. Although
the correlation of s3 and M,,,., is moderate, it is driven
by an outlier event, SN 2006Y. As A14 noted, this SN
presents an atypical behaviour in photometry, but here
we confirm its strange behaviour in the spectra. If we
remove this SN from the analysis, the correlations de-
crease significantly. The correlations between s3 and the
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Figure 7. Correlation matrix of the individual spectral and photometric parameters at 50 days. Colors indicate the Pearson correlation
coefficient p. In the diagonal line is shown Pd: plateau duration; OPTd: optically thick duration; C'd: cooling duration; My, qz: magnitude
at maximum; M,,4: magnitude at the end of the plateau; M;,;;: magnitude in the radioactive tail phase; s1: initial decline; sa2: plateau

decline; s3: radioactive tail decline;

Ni mass: nickel mass; A(B — V) 3¢ color gradiente between 10 and 30 days from explosion; v(Ha):

H, velocity obtained from the FWHM of the emission component; v(Hg): Hg velocity; v(Fell5): Fe II 5018 velocity; v(Fell6): Fe II
5169 velocity; v(Na): Na I D velocity, pEW(Hqa)a: pEW of Ho absorption component; pEW(Hq )e: pEW of the Hy emission component,
pEW(Hpg): pEW of Hg, pEW(Fell5): pEW of Fe II 5018, pEW(Fell6): pEW of Fe II 5169; pEW(Na): pEW ofNa I D, a/e: ratio of
absortion to emission component of Hy P-Cygni profile; Avel(HqFell5): Avel(Hy—Fe II 5018), Avel(NaFell5): Avel(Na I D—Fe II 5018);

and Av(Hg)s0,80: Av(Hpg) in a range of [+50, +80] days.

velocities are moderate. In the last panel of Figure 14
the correlation between s3 and the pEW (Fe II 5018) is
presented, which, like M, is driven by SN 2006Y. Sum-
marizing, s3 has weak correlations with the pEWs and
the magnitudes.

6. DISCUSSION

Using numerous defined spectral and photometric
parameters we have searched for correlations between
different observed properties of SNe II. We argue that
Pd is a better parameter than OPTd for constraining
the pre-SN hydrogen envelope mass. Our analysis shows

a strong correlation between Pd and sz, arguing that
both of these parameters are strongly linked to the
hydrogen envelope mass/ejecta mass. While expansion
velocities and SN II magnitudes display a significant
degree of correlation, they show only weak/moderate
correlations with Pd and sz, suggesting that explosion
energy - observed through diversity in velocities and
luminosity - and hydrogen envelope mass vary somewhat
independently between SNe II.

We now qualitatively compare our results with those
found in previous studies, both observational and
theoretical, attempting to tie these correlations to the
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underlying physics of SNe II.

6.1. The influence of explosion energy

Hamuy & Pinto (2002) found that the luminosity of
the SNe IIP correlates with the photospheric velocity
(Fe 1I velocity) at 50 days from explosion. Brighter
SNe II have higher ejecta expansion velocities. This
correlation has enabled the use of SNe II as distance
indicators. In Figure 11 we show the same relation,
but in generalized form; velocities correlate with SN II
brightness at all epochs. In addition, we show that this
luminosity-velocity correlation is stronger at peak bright-
ness (M,,q;) than during the plateau. Dessart et al.
(2013a) has shown that more energetic explosions pro-
duce more **Ni mass, brighter SNe II with faster expand-
ing velocities. This is consistent with our results, and
suggests that explosion energy is indeed a primary pa-
rameter that influences SN II diversity, and that is traced
through SN II brightness, velocities and *°Ni mass.

6.2. The influence of hydrogen envelope mass

According to theoretical models faster declining SNe 11
can be explained by the explosion of stars with low hy-
drogen envelope mass (e.g. Litvinova & Nadezhin 1983;
Bartunov & Blinnikov 1992; Popov 1993 and Moriya
et al. 2016). As discussed previously, differences in en-
velope mass are likely to directly affect the length of the
plateau, Pd (we again stress the difference between this
parameter and OPTd, with the latter traditionally be-
ing assumed to be related to the envelope mass). This is
because the plateau, Pd, is powered by the recombina-
tion of hydrogen in the expanding ejecta, and the lower
the hydrogen envelope mass the quicker the recombina-
tion wave reaches its inner edge. The fact that Pd also
correlates with s3 (Figure 8) further supports this view,
given that higher s3 can be interpreted as being due to
a lower ejecta mass (A14) that can trap the radioactive
emission (which is powering the light-curve at these late
epochs). With respect to faster declining SNe II, we ob-
serve a significant trend in that SNe II with higher sg
have smaller Pd values, implying that the former is in-
deed related to the hydrogen envelope mass as has been
predicted and discussed for many years. Recent observa-
tional works (e.g. A14, Valenti et al. 2016) suggested that
the phase between the explosion date and the end of the
plateau (historically known as the plateau duration, but
here named OPTd) is the key parameter constraining
the envelope mass. However, Pd shows higher degrees of
correlation with other parameters, in particular s, and
s3. This suggests that Pd is indeed a better tracer of
envelope mass than OPTd. In addition, we find that a/e
shows strong and moderate correlation with Pd and s3
respectively, suggesting that this spectral parameter is
also a useful tracer of envelope mass (as already argued
in Gutiérrez et al. 2014).

From the the correlation matrix (Figure 7) we can ob-
serve stronger relations between Pd and ss, as well as
with the expansion velocity, than between OPTd and
the same parameters. This is because all these parame-
ters are measured during the recombination phase, where
they have similar physical conditions. On the other hand,
OPTd conveys information on the physical parameters
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that dominate the early phases of the light curve, plus
the hydrogen envelope recombination. Consequently the
correlations are weaker.

In Figure 7 we can see that *’Ni mass shows a strong
correlation with Pd, while with OPTd display an an-
ticorrelation. Analysing these findings (Figure 15), we
can see that the relation between **Ni mass and the Pd
is produced by only three measurements, and therefore
the probability of this correlation being real is very small
(P=0.33). In the case of the O PTd-%°Ni mass plot, this
anti-correlation is driven by a number of outliers.

From Figure 7, we also see that O PT'd has stronger cor-
relations with C'd, s; and M;,;; than with Pd. The strong
relation between OPT'd and Cd is expected because the
former, by definition, includes the latter one (the same
applies to OPTd and Pd; see the OPTd definition in
Figure 1). However, Pd and C'd are not related, because
they are most likely associated with different physical

properties of SNe II. Between OPT'd and s; the correla-
tion is moderate, but again, it is driven by the physical
parameters that dominate the early phases of the light
curve, which, by definition, are included in OPTd. One
interesting correlation is displayed between OPTd and
Miqq: SNe IT with larger O PT'd values are fainter in the
radioactive tail phase. This relation may be understood
given that the epoch of the M;,;; measurement directly
arises from the length of OPTd. This means that, if the
optically thick phase takes more time, the M;,;; will be
measured later, which in turn, implies fainter magnitudes
(for the same °°Ni mass that is powering the late-time
LC). This suggests that, the correlation between OPTd
and My, is essentially based on the total duration of the
optically thick phase, i.e., the photospheric phase.

In summary, we observe three key SN II parameters
that we believe are strongly related to the extent of the
hydrogen envelope mass at the moment of explosion: Pd,
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s3, and a/e.

6.3. The influence of explosion energy on the strength
of spectral lines

Figures 4, 5 and 6 display some interesting trends.
While the strength of each correlation is complicated
by the obvious outliers together with those SNe where
no spectral line detection was made, in general it seems
that expansion velocities correlate positively with the
strength of the Balmer lines and Na I D, and nega-
tively with the strength of metal lines. The strength
of metal lines at any given epoch is most strongly re-
lated to the temperature of the line forming region. We
therefore conclude that more energetic explosions pro-
duce SNe II that stay at higher temperatures for longer
leading to lower metal-line pEWs. With respect to the
Balmer lines (at least the emission component of H,
and the absorption component of Hg) this would then
imply that more energetic explosions lead to relatively

stronger line strengths. The exact physical interpretation
of this is unclear. Brighter, i.e., more energetic SNe II
also display weaker metal lines (Figure 7 and specifically
Figure 13 bottom middle panel). Finally, we also note
that differences in progenitor metallicity will also affect
the strength of metal lines within spectra, as argued by
Dessart et al. (2014) and Anderson et al. (2016) (but
probably to a lower degree, at least in the current sam-
ple).

6.4. H, P-Cygni diversity

A large diversity in the H, P-Cygni profile had been
shown by Patat et al. (1994) and Gutiérrez et al. (2014).
They found that SNe IT with smaller a/e values are
brighter, and have higher velocities and steeper decline
rates. With our analysis at 50 days, we confirm these
results, however the correlations presented here are of
lower strength than those in Gutiérrez et al. (2014). This
is most likely due to the epoch of the measurements,
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where in Gutiérrez et al. (2014) measurements were of 50 days post explosion different SNe are at different
made at tyrant10 (Where tyq, is the transitional epoch phases of their evolution.

between s; and s3). Here we chose to use epochs with It has previously been argued that the H, P-Cygni
respect to explosion to measure our spectral parameters. diversity is directly related to the hydrogen envelope
This enables us to analyse the full range of events within mass (Schlegel 1996; Gutiérrez et al. 2014). The results
our sample (in many SNe II it is not possible to define we present here also support this view, with the absorp-
teran). The difference in correlation strength therefore tion component of H,, - and in particular the absorption
arises from the measurements in Gutiérrez et al. (2014) in relation to the emission, a/e - showing correlation
being made when SNe II are likely to be under more with both Pd and s3, parameters that we have already

consistent physical conditions. Here, using an epoch argued are direct tracers of the envelope mass. We also
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note however that the measurement of H,, absorption is
complicated by the detection and diversity of Cachito
(Paper I). It is quite possible therefore that vast ma-
jority of the underlying diversity of H, morphology is
determined by the hydrogen envelope mass, but com-
plications in the latter’s measurement introduce much
of the dispersion we see (in e.g. Figure 10, bottom right).

6.5. Other comparisons

As discussed in Patat et al. (1994), A14 and more re-
cently Valenti et al. (2016) and Galbany et al. (2016),
we find that faster declining SNe II are brighter events
(see Figure 10). In addition, we also find that SNe II
with brighter luminosities have greater expansion veloc-
ities and produce more °°Ni. In Figure 12 and 13 we
show a few examples of these correlations. Similar re-
sults were found by several authors in observational (e.g.
Hamuy 2003; Spiro et al. 2014; Valenti et al. 2016; Miiller
et al. 2017) and theoretical (e.g. Kasen & Woosley 2009)
works.

Theoretical models show and increase in the °*Ni mass
leads to an increase in the plateau duration (e.g.Kasen &
Woosley 2009 and Nakar et al. 2016). We do not find any
observational evidence for such a trend. There are only
3 data points in the correlation between Pd and ?°Ni,
therefore strong conclusions are not warranted. If we in-
clude lower-mass °°Ni limits we also see no evidence for
correlation. This may suggest that observationally Pd
does not depend on the mass of *°Ni mass. However,
given the inclusion of lower-mass *°Ni limits, this war-
rants caution.

Many authors have found (e.g. Dessart & Hillier 2011)
that SN II color evolution could be related with the ra-
dius of the progenitor star. Although we include the color
gradient (A(B —V)) between 10-30 days post-explosion
in our analysis, we do not find significant correlations
associated to this parameter. However, we do note low-
level correlation between A(B — V') and the strength of
Fe I A5018 and Fe II A5169 (Figure 7), in the direction
one would expect: SNe II that cool more quickly (higher
A(B —V)) display stronger metal-line pEWs. Cd also
does not display significant correlation with other param-
eters. While above we linked C'd to progenitor radius, as

predicted by Dessart et al. (e.g. 2013a), the direct influ-
ence of radius on C'd is complicated by any presence of
CSM close to the progenitor and may explain the lack of
correlations.

Dessart et al. (2014) showed that differences in metal-
licity strongly influence in the SN II spectra, more pre-
cisely in the strength of the metal lines. Anderson et al.
(2016) supported this result showing a correlation be-
tween the strength of Fe IT A5018 with the oxygen abun-
dance of host H II regions. They showed that SNe II
exploding in lower metallicity regions have lower iron
absorption. Looking for relations with the pEW(Fe 1I
A5018), we find a correlation of 0.48 with the Pd and
—0.62 with s3. Assuming that the pEW(Fe II A\5018)
gives an idea of the metallicity where the SN explode,
this correlation would mean that higher metallicity pro-
duce SNe with a longer plateau, which is in the opposite
direction of the predictions (e.g. Dessart et al. 2013a).
However, when we correlate Pd with the oxygen abun-
dance determined by Anderson et al. (2016), we do not
find any relation. As in Anderson et al. (2016) we there-
fore conclude that (at least in the current sample), the
strength of metal lines is dependent more on temperature
than progenitor metallicity.

7. CONCLUSIONS

In this work we have presented an analysis of cor-
relations between a range of spectral and photometric
parameters of 123 SNe II, with the purpose of un-
derstanding their diversity. To study this diversity,
we use the expansion velocities and pseudo-equivalent
widths for eleven features in the photospheric phase
(from explosion to ~ 120 days): H,, Hg, Fe II 4924,
Fe II A5018, Fe II A5169, Sc II/Fe 1I A5531, Sc 1I M,
Na I D, Ba II 6142, Sc II A6247, and O I \7774; the
ratio absorption to emission (a/e) of the H, P-Cygni
profile; the velocity decline rate of Hg (Av(Hg)) and
the velocity difference between H, and Fe II A5018,
and Na I D and Fe IT A5018 (Avel). From the light
curves we employed three magnitude measurements
at different epochs (Mynaz, Mend, Miqi); three decline
rates (s1, s2, 83); three time durations (OPTd, Pd, Cd);
the ®°Ni mass, and the color gradient, A(B — V). We
searched for correlations at 30, 50 and 80 days, finding
that correlations are stronger at 50 days post-explosion.
We suggest this happens because at 50 days SNe II are
under similar physical conditions: at 30 and 80 days not
all SNe II are in the same stage, some are in the cooling
(at early phases) and some are in the transition to the
nebular phase (at the end of the plateau).

Our main results are summarized as follows:

e We confirm previous results showing that brighter
SNe II have higher expansion velocities. Here we
show that this finding is true for all SN II decline
rates, and also extends to magnitudes measured at
maximum and during the radioactive tail. These
results are most easily explained through differ-
ences in explosion energy: more energetic explo-
sions produce brighter and higher velocity SNe II.
Additionally we find that more energetic (brighter
and faster) events produce more %5Ni.

e We highlight our different definition of the plateau
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duration (Pd) in this work as compared with the
literature: from the s;—s, transition to the end of
the plateau, and conclude that it is a more robust
parameter connected to H-rich envelope mass. In-
deed, we find that Pd shows much stronger correla-
tions with other parameters than the traditionally
used definition (OPTd in our nomenclature). We
conclude that Pd, s3 and a/e are most directly af-
fected by the hydrogen envelope mass at explosion
epoch.

e While we have found many different trends and
correlations between different spectral and photo-
metric parameters of SNe II, hinting at underlying
physical trends driving diversity (explosion energy,
hydrogen envelope mass, °°Ni mass), we conclude
there is no one parameter dominating these trends.

e As expected, expansion velocities measured for dif-
ferent spectral lines correlate strongly with each
other. However, velocities for different lines for in-
dividual SNe II are significantly offset, suggesting
that they form at different regions at differing dis-
tances from the photosphere.

e Brighter SNe have higher velocities, smaller pEWSs,
shorter a/e, steeper declines and small Pd and
OPTd values.
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Table 2
Average of correlations
Parameter Average at 30 days Average at 50 days Average at 80 days
Pd 0.370 0.410 0.425
OPTd 0.305 0.316 0.342
Cd 0.225 0.228 0.233
Mpaz 0.392 0.417 0.375
Mend 0.325 0.345 0.343
Miaar 0.406 0.423 0.456
S1 0.355 0.391 0.344
S 0.304 0.348 0.325
S3 0.334 0.374 0.363
56Ni 0.449 0.520 0.550
AC(10 — 30) 0.208 0.219 0.213
V(Ha) 0.361 0.468 0.452
V(Hg) 0.416 0.479 0.441
V(Fe II 5018) 0.380 0.450 0.325
V(Fe II 5169) 0.415 0.477 0.393
V(NaID) 0.450 0.519 0.480
pPEW(Ha)a 0.279 0.270 0.287
pEW(Ha). 0.138 0.362 0.427
pEW (Fe II 5018) 0.329 0.339 0.218
pEW (Fe II 5169) 0.167 0.209 0.189
pEW(Na I D) 0.238 0.242 0.354
ale 0.269 0.328 0.316
Avel(H, - Fe 11 5018) 0.303 0.321 0.438
Avel(Na I D - Fe II 5018) 0.403 0.426 0.419
Av(Hp) 0.248 0.228 0.207

Average of the correlations at 30, 50 and 80 days since explosion presented for 11 photometric parameters and 14
spectroscopic ones. In the first column the SN II parameter is listed (described in 3), while in the second, three and four
column are the average.
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SPECTROSCOPIC AND PHOTOMERIC CORRELATIONS
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