1,379 research outputs found
Software debugging techniques
This lecture provides an introduction to debugging, a crucial activity in every developer's life. After an elementary discussion of some useful debugging concepts, the lecture goes on with a detailed review of general debugging techniques, independent of any speci c software. The nal part of the lecture is dedicated to analysing problems related to the use of C++ , the main programming language commonly employed in particle physics nowadays
The Online Histogram Presenter for the ATLAS experiment: a modular system for histogram visualization
The Online Histogram Presenter (OHP) is the ATLAS tool to display histograms produced by the online monitoring system. In spite of the name, the Online Histogram Presenter is much more than just a histogram display. To cope with the large amount of data, the application has been designed to minimise the network traffic; sophisticated caching, hashing and filtering algorithms reduce memory and CPU usage. The system uses Qt and ROOT for histogram visualisation and manipulation. In addition, histogram visualisation can be extensively customised through configuration files. Finally, its very modular architecture features a lightweight plug-in system, allowing extensions to accommodate specific user needs. After an architectural overview of the application, the paper is going to present in detail the solutions adopted to increase the performance and a description of the plug-in system
GNAM and OHP: Monitoring Tools for ATLAS experiment at LHC.
ATLAS is one of the four experiments under construction along the Large Hadron Collider (LHC) ring at CERN. The LHC will produce interactions at a center-of-mass energy equal to âs = 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS sub-detectors at the various levels of the ATLAS data flow. This note presents two monitoring tools that have been developed for this aim within the architecture ATLAS Monitoring Framework and the Data Acquisition System: GNAM and OHP. The first one is a framework for online histogram production; the second one is graphical application for histogram presentation. This tools are now widely used during the ATLAS commissioning and their performances are reported in this not
A PMT-Block test bench
The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is
housed in a unit, called {\it PMT-Block}. The PMT-Block is a compact instrument
comprising a light mixer, a PMT together with its divider and a {\it 3-in-1}
card, which provides shaping, amplification and integration for the signals.
This instrument needs to be qualified before being assembled on the detector. A
PMT-Block test bench has been developed for this purpose. This test bench is a
system which allows fast, albeit accurate enough, measurements of the main
properties of a complete PMT-Block. The system, both hardware and software, and
the protocol used for the PMT-Blocks characterisation are described in detail
in this report. The results obtained in the test of about 10000 PMT-Blocks
needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile
Calorimeter are also reported.Comment: 23 pages, 10 figure
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
