ATL-DAQ-CONF-2007-023

31 August 2007

)

N

2006 IEEE Nuclear Science Symposium Conference Record

NO7-6

GNAM and OHP: Monitoring Tools for ATLAS
experiment at LHC.

P. Adragna?, D. Cimino®, M. Della Pietra®, A. Dotti®, R. Ferrari?, G. Gaudio?, C. Roda’, D. Salvatore®,
W. Vandelli/,P. F. Zema?.

®Queen Mary, University of London, London, UK
bUniversity and INFN of Pisa, Pisa, Italy
“INFN of Napoli, Napoli, Italy
4INFN of Pavia, Pavia, Italy
“University of Calabria and INFN of Cosenza, Cosenza, Italy
fUniversity and INFN of Pavia, Pavia, Italy
9CERN, Geneva, Switzerland, on leave from University of Calabria and INFN of Cosenza, Cosenza, Italy

Abstract— ATLAS is one of the four experiments under con-
struction along the Large Hadron Collider (LHC) ring at CERN.
The LHC will produce interactions at a center-of-mass energy
equal to /s = 14 TeV at 40 MHz rate. The detector consists
of more than 140 million electronic channels. The challenging
experimental environment and the extreme detector complexity
impose the necessity of a common scalable distributed monitoring
framework, which can be tuned for the optimal use by different
ATLAS sub-detectors at the various levels of the ATLAS data
flow. This note presents two monitoring tools that have been
developed for this aim within the architecture ATLAS Monitoring
Framework and the Data Acquisition System: GNAM and OHP.
The first one is a framework for online histogram production; the
second one is graphical application for histogram presentation.
This tools are now widely used during the ATLAS commissioning
and their performances are reported in this note.

ATLAS, DAQ, online monitoring, GNAM, OHP. Index
Terms—

I. INTRODUCTION

TLAS [1] is one of the four experiments being installed

at the LHC. The experiment includes several challenging
detection technologies and is supported by a large, distributed
data acquisition and trigger system (TDAQ). LHC will pro-
vide collisions at a center-of-mass energy of 14 TeV with
a frequency of 40 MHz. The output of the ATLAS first
level trigger will be about 100 kHz. This frequency will be
further reduced by the higher trigger levels and finally some
hundreds of events will be selected and stored every second.
The whole ATLAS detector consists of about 140 million
electronic channels and the expected average event size is about
1-2 MB. Considering the huge number of channels and the high
event rate, a monitoring system is an essential tool to assess the
status of the hardware and the quality of the data while they

Corresponding author: M. Della Pietra.
Tel.: 439 081676125. E-mail: massimo.dellapietra@na.infn.it

1-4244-0561-0/06/$20.00 ©2006 IEEE.

[Detectors

L1A
‘ LVL1
ROD
[|
A
ROB
Ris HLT
SFI %@
EB | SFO
I To disk

Fig. 1. Simplified schema of the ATLAS dataflow and trigger system. All the
acronyms are explicated in the text

are being acquired. Such monitoring system should cope with
the challenging experimental conditions providing a flexible,
scalable and tunable framework, in order to be useful for the
different ATLAS sub-detectors and sub-systems.

II. ATLAS TDAQ AND MONITORING FRAMEWORK

N ATLAS there are several levels of data flow [2]. Data

are acquired by the front-end electronics (FE), located next
to the detectors, and are collected, step by step, until the full
event is assembled (see Fig. 1). The level one trigger electronics
(LVL1) is devoted to the first selection level; if an event is
accepted, all the FE boards send the data to the Read Out
Drivers (RODs), which are detector-specific custom modules.
Each ROD is point-to-point connected to one Read Out Buffer

114

(ROB), that is a PCI custom board, to which it sends detector-
specific data. The event is then assigned to one processing node
of the second level trigger (LVL2) farms, which collects from
the Read Out Systems (ROSs) the data fragments belonging
to the detector regions selected by the LVLI and starts its
filtering algorithms. Accepted events are assigned to a Sub-
Farm Input (SFI), which collects all the data fragments from
the ROSs and assembles the complete event. The last filtering
stage is the Event Filter (EF), the second component, together
with the LVL2, of the High-Level Trigger (HLT) sub-system.
Built events are sent to EF farm processing nodes, in which
a Processing Task (PT) completely reconstructs and analyzes
the data with high-precision algorithms taken from the ATLAS
offline analysis framework (Athena). Events accepted by the EF
are passed to the Sub-Farm Output (SFO) for the transmission
to the mass storage. The ATLAS TDAQ infrastructure is a large
distributed environment, including thousands of computing
nodes and custom modules. In order to verify the good quality
of the data sent to the permanent storage, the whole triggering
system, the DAQ system and the ATLAS sub-detectors should
be constantly monitored in terms of functionality and results.

To understand the complexity of the monitoring framework
mandate, one has to consider that more than 3000 sources of
monitoring information and up to 300 event sampling points
are foreseen in the final ATLAS environment. This will lead
to a O(10 GB) of monitoring data produced each run. To
fulfill this mandate, the ATLAS monitoring system is organized
as a distributed framework and includes several applications,
ranging from low-level information-sharing components up
to high-level graphical interfaces. This separation permits to
isolate the problems and to optimize each application for the
specific needs.

The ATLAS TDAQ software provides a number of services,
collectively known as Information Sharing Services, that can be
employed for building a monitoring system. Their main task
is to carry requests, about monitoring data, from monitoring
destinations to monitoring sources, and then the actual moni-
tored data back from sources to destinations. The main services
supplied for Monitoring purposes are the following [3]:

o Event Monitoring (Emon) provides a framework to enable
event sampling and distribution. User programs may re-
quest event fragments with selected properties, like trigger
or sub-detector type, from a specific sampling point. Since
an event is transported as a sequence of bytes, Emon is
neutral to the event format and can handle events coming
from any level of the data flow. In order to minimize
the load on the sampling application, requesting programs
with the same selection criteria are arranged in a tree.
Hence the sampling application forwards the events only
to the first requester in any tree. The distribution of the
data along the tree is done transparently to the users in a
peer-to-peer approach.

o Information Service (IS) is responsible for archiving and
sharing any kind of information among the different pro-
cesses running. It supports three main types of interactions:

information providers can create, update or delete infor-
mation, while information readers can get the value of the
information. Moreover information receivers can subscribe
to the repository to be notified about changes. In addition,
through IS any application is able to send commands to
any of the running providers. This is useful to control the
IS information flow: for example an application may ask
a particular provider to increase the frequency of informa-
tion updates or to republish a particular information.

e Online Histogram Service (OHS) manages histograms,
providing a transient storage between histogram producers
and displays. Histograms are published in the OHS server,
where they are available to the entire system. The OHS
also allows commands to be routed. Actually, any applica-
tion can issue a command related to a particular histogram:
the OHS takes care of sending the command to the
appropriate histogram provider. OHS is essentially based
on IS and extends its functionalities to handle histogram
objects, in particular raw and ROOT [4] histograms are
supported.

o Message Reporting System (MRS) transports messages
among TDAQ applications. Messages may be used to
report debug information, warnings or error conditions.
MRS allows to associate qualifiers and parameters to each
message. Message receivers can moreover subscribe the
service to be notified about incoming messages, also using
filtering criteria.

The ATLAS TDAQ software services are built on top of a
common Inter Process Communication service, whose imple-
mentation is based on CORBA [5].

III. GNAM

GNAM [6] is a light-weight configurable framework opti-
mized for detector functionality monitoring. It can be used to
perform many sorts of jobs, thanks to a plug-in design that
separates common actions and analysis algorithms, which are
stored in dynamic libraries loaded at run-time. The GNAM
application has been designed in order to fulfill the following
requirements:

o The application architecture must be detector independent
in order to manage data produced by different subdetec-
tors. Fragment processing must rely only on its structure
and not on its content.

o The application must be modular in order to separate the
common actions from the detector dependent ones. Com-
mon actions consist, for example, in unpacking up to the
subdetector specific part or managing histograms. Detector
dependent actions include simple raw data decoding and
analysis, booking and filling of histograms;

o The application must avoid duplication of code. All the
functionalities available in the ATLAS TDAQ software
framework must be available in the monitoring program.
The underlying technology for histogram management
should rely on well-known tools.

115

latatiow OH P
Dekalow (RODHOS) Detector Plug-ins .
D D \\detector‘ﬂ / ,,ﬁirf;\(f°'°”"""'*e”»‘ o
T Imner N L SRS
Event \ \‘defecfor'“ 7
Monitoring S 1
Service Data
Fragments -
\ Online
e Histogrammin
Synchronous \A TR A’/ S er'vige 9
Commands ‘
— | GNAM Core
DA Asynchronous
Q i) commands (Reset,
Update,
Fig. 2. GNAM framework schema and its relation with the ATLAS Online

Monitoring environment.

« The application must be controllable either by the TDAQ
or by the users. In standard conditions, the monitor is
controlled by the TDAQ run control system. However,
for debugging and testing purposes, the user must be able
to control the monitoring process independently from the
overall TDAQ state.

o Histogram production and visualization must be indepen-
dent of one another. Histograms have to be published in
a common server and made available for all the processes
that may require them, their further processing (online
display, comparison with reference histograms, fitting)
must be carried out by a separate application.

These requirements drove the design of the monitoring archi-
tecture. The core, see Fig. 2, responsible for common actions,
has been modeled as a finite state machine synchronous with
the TDAQ. Detector dependent actions have been implemented
in dynamic libraries. The data source can be either an online
sampler from Emon (ROD, ROS, or SFI) or a file sampler. For
the latter case, an application was developed to read a raw data
file and feed the Event Monitoring Service, emulating an online
data source. The core application, identifies all the ROD data
fragments and arranges them in a list. No further unpacking
can be done centrally, as from this point on the decoding is
detector dependent. GNAM typically loads one decoding li-
brary per subdetector and one or more histogramming libraries.
ROOT [4] is the underlying technology for histogramming. The
implementation of the decoding and histogramming libraries is
responsibility of the subdetector groups. The decoding library
receives from the core the list of the detector data fragments
and, among them, identifies and decodes the pertinent data.
The decoded data are then transiently stored by the core. The
histogramming library retrieves the data related to one or more
detectors, carries out simple analysis and fills histograms. The
same library books the histograms and returns a list of them
to the core for central management (publication on the server,

dump on file, etc.). Any histogramming library has access to all
the decoded data stored inside the core. This allows to produce
histograms of correlations among different detectors without
duplication of decoding. The state transitions are managed
by the core and are completely transparent to the detector
libraries. The finite state machine architecture of GNAM also
guarantees the synchronization with the overall TDAQ system.
For debugging and testing purposes, the user can execute the
monitoring application in asynchronous mode, controlling the
state transitions manually. As previously mentioned, histograms
are centrally handled by the core, that takes care of publishing
them to the OHS server, saving them into a file and executing
user commands on request. In order to extend the ROOT
histogram functionalities, a wrapper for the ROOT histogram
base class has been developed, adding meta-data and other
properties to each histogram. GNAM can moreover handle
asynchronous commands coming through the OHS to modify at
run-time histogram properties or to execute custom functions
defined in the analysis libraries. Special GNAM subdetector
libraries can also be used to to feed the Offline Event Display
software with decoded and formatted data, in order to display
the event online. This is achieved writing the decode data into
a circular buffer, resident on the RAM of the CPU that runs
the process.

IV. OHP

The Online Histogram Presenter (OHP) is a general pur-
pose, highly congurable, interactive presenter developed in
the context of the Online Monitoring System of the ATLAS
experiment. As described in the section II, all the histogram
producers in the Monitoring framework publish their results
to the OHS server that collects all this histograms. From this
point of view, the OHP can be considered as client of the OHS.
OHP can operate in two different modes: it can browse the
OHS and/or show a configurable set of online or reference
histogram in a series of tabs. The two modes allow both the
detector experts and the standard shifters to have all the needed
functionalities within the same application.

OHP is structured as a multi-thread application and as been
designed in order to allow all the users (expert or non expert)
to interact with the displayed histograms, in order to perform
operations like fitting, zooming and changing the graphical
appearance of the plot. Moreover is possible for the user to
interact with the histogram producer, asking for a reset or
turning on/off the filling of the histogram; it is also possible to
compare the online histograms with reference ones.

The most important requirement for this application is to
get the histograms available to the user as soon as they
have been produced, minimizing the network traffic, as much
as possible. OHP receive histograms from the OHS server
through a subscription mechanism: this allows the process to
be informed whenever the subscribed histogram change status,
e.g. when the histogram is published or updated.

OHP is composed of the following subsystems:

o the Core Subsystem which provides access to the his-

tograms from the Graphical User Interface. It also controls

116

Notifications

Histogram receiver

Cache
)t
Filtering & -VCO re '\\;
System Nowr owi”
N 77
OHP I %GUI il

Fig. 3. Schema of the OHP architecture.

all the other components. the Histogram Receiver which
is responsible for receiving notifications and retrieving
histograms from OHS on request. Multiple subscriptions
are possible: each subscription creates a dedicated receiver.

« the Cache which is used to store the received notification
and histogram, each Histogram Receiver owns a cache.
The aim of the cache. The cache is a key component to
minimize the network traffic, and the description of its
usage is described below.

« the Filtering Subsystem which filters the notifications that
are related to the active canvas. The active canvas is the
one on focus, i.e. the one that the user actually sees.

o the Graphical User Interface (GUI) which is based on
the Qt ®(Trolltech Inc.) [7] framework. The underlying
technology for histogramming is ROOT, which provides
the user with all the functionalities to interact with the
histograms, such as zooming, fitting, changing the graphic
aspect etc. Figure 4 shows a screenshot of the GUI as it
appears when used to browse the OHS content.

In order to better understand how the different subsystems
operate together, let us examine the OHP works in more detail.
Whenever a histogram is published or updated, the OHS notifies
the event to the OHP, which will decide whether to retrieve
the plot and draw it on the screen. This notification received
by OHP is sent to the Filtering Subsystem and the cache is
updated with the histogram name and its time-stamp Tn. If the
histogram must be drawn in the active window, the notification
is also propagated to the GUI; otherwise it is discarded. Note
that no histogram is transferred over the network during this
operation. After receiving the notification, the GUI asks the
Core for the histogram. The histogram is searched for in the
cache. If it is not found, the histogram is downloaded from
OHS, stored in the cache together with the time-stamp Tr
(where r stands for retrieval) and sent back to the GUI that
displays it on the screen. On the contrary, if the histogram is
found in the cache, the notification time-stamp Tn is compared

BEE]| —

B

Gnline Histogram Presenter """

Eile Actions Help

CEL I]
PedSumRms_| PedSumMean
Histograms _+ =] [Most Energetic Tower (bC)| [frweemse)
S Entries 932
Mean 1787
+&pERUG RMS 1.269
= SHIFT
g ile
=& CosmicHisto

i EEtaPhiMap

|1 EEtaPhiMapC

|k EMostEtaPhiMap

|1 EMostEtaPhiMapC
|k EMostEtaPhiMapWei
|1 EMostEtaPhiMapWeiC

i EMostPhiTower
i EMostPhiTowerC

< §jorawo ~

9 10
oo
State: [T Pariton: | & | server Name: [Histogramming | istograms Received Rate:
BT -] | @ remi.. [Oniine | wed jui 26 - & N
€ @B B A e m—r]| - Y

Fig. 4. A screenshot of the OHP GUIL

with the retrieval time-stamp Tr. If Tr ; Tn the cached histogram
is replaced with the more recent one available in the OHS.
Otherwise the cached histogram is displayed immediately.
When the user changes the active window, the histograms to be
drawn are searched in the caches and, only if needed, retrieved
from OHS. The use of the notification mechanism together with
a caching system effectively contributes to reducing the network
traffic, since histograms are transferred only when actually
needed. The histograms in the active windows are continuously
updated with the same frequency they are received. In order to
be able to interact with a particular histogram, for example to
perform a fit, when a histogram is double-clicked the histogram
is copied and displayed in a pop-up window. This allows both to
work on the selected histogram and to keep the active window
continuously updating. The Online Histogram Presenter can be
fully configured (subscriptions, graphical aspects, predefined
tabs, reference histograms) either through an ASCII or XML
file or via a graphical panel. Finally, commands to the histogram
producers (i.e., GNAM) can be sent through the OHS in order to
reset, rebin an histogram or force the upgrade of the histogram
itself.

V. CONCLUSION

GNAM and OHP have been developed within the ATLAS
Online Monitoring framework to perform the data quality and
detector performances monitoring. This two tools fulfill the
requirements of scalability and flexibility imposed by the huge
amount and rate of data to be checked. They are already widely
used during the commissioning phase of the detector that is
ongoing at CERN, representing a very useful tool to understand
the detector performances. This commissioning phase will be
also a benchmark for the performances of these application and
for the whole Online Monitoring framework.

REFERENCES

[1] ATLAS Collaboration, ATLAS Muon Spectrometer Technical Design
Report, CERN/LHCC/97-22, ATLAS TDR 10 (1997).

117

[2]
[3]
(4]

[3]
[6]
(71

ATLAS Collaboration, ATLAS High-Level Trigger, Data Acquisition and
Control, CERN/LHCC/2003-22, Geneva, CERN, 2003.

S. Kolos et al., Online Monitoring software framework in the ATLAS
experiment, CHEP 2003. La Jolla, CA, USA, 2003

R. Brun, F. Rademakers, ROOT - An Object Oriented Data Anal-
ysis Framework, Proceedings AIHENP’96 Workshop, Lausanne, Sep.
1996, Nucl. Inst.& Meth. in Phys. Res. A 389 (1997) 81-86. See also
http://root.cern.ch/.ROOT.”

A. Amorim et al., Use of CORBA in the ATLAS prototype DAQ, IEEE
Transaction on Nuclear Science, Vol. 45, No. 4, August 1998.

A. Dotti et.al, IEEE Transaction on Nuclear Science, Vol 53 N. 3 June
2006.

J. Blanchette, M. Summerfield, C++ Programming with Qt 3 (ISBN 0-
13-124072-2). :Prentice Hall, 2004.

118

