436 research outputs found
Extended 1D Method for Coherent Synchrotron Radiation including Shielding
Coherent Synchrotron Radiation can severely limit the performance of
accelerators designed for high brightness and short bunch length. Examples
include light sources based on ERLs or FELs, and bunch compressors for linear
colliders. In order to better simulate Coherent Synchrotron Radiation, the
established 1-dimensional formalism is extended to work at lower energies, at
shorter bunch lengths, and for an arbitrary configuration of multiple bends.
Wide vacuum chambers are simulated by means of vertical image charges. This
formalism has been implemented in the general beam dynamics code "Bmad" and its
results are here compared to analytical approximations, to numerical solutions
of the Maxwell equations, and to the simulation code "elegant"
A New Seismic-Geotechnical Strong Motion Approach
We have developed a new approach to estimate site-specific strong motion due to earthquakes on specific faults or source zones. It combines seismologic and geotechnical studies. It entails obtaining records of small earthquakes at the site, both at the surface and downhole in bedrock, as well as performing geotechnical dynamic site characterization. This new approach has the dual result of providing an optimized definition of the dynamic geotechnical site properties and providing calculated free-field, strong motion estimates. The procedure is demonstrated at the Painter Street Bridge site in Rio Dell, CA, for which we provide a range of surface motions corresponding to an earthquake of magnitude 7 on the subducting plate underlying this region. These calculated motions bracket the records of the Petrolia event (M = 7) measured near the site
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF
M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
An RLL-Constrained LDPC Coded Recording System Using Deliberate Flipping and Flipped-Bit Detection
International audienceIn this paper, a low-density parity-check (LDPC) coded recording system is investigated, for which the run-length-limited (RLL) constraint is satisfied by deliberate flipping at the write side and by estimating the flipped bits at the read side. Two approaches are proposed for enhancing the error performance of such a system. The first approach is to alleviate the negative effect of incorrect estimation of the flipped bits by adjusting the soft information. The second approach is to increase the likelihood of the correct detection of flipped bits by designing a flipped-bit detection algorithm that utilizes both the RLL constraint and the parity-check constraint of the LDPC code. These two approaches can be combined to obtain significant improvement in performance over previously proposed methods
Pan-parastagonospora comparative genome analysis-effector prediction and genome evolution
We report a fungal pan-genome study involving Parastagonospora spp., including 21 isolates of the wheat (Triticum aestivum) pathogen Parastagonospora nodorum, 10 of the grass-infecting Parastagonospora avenae, and 2 of a closely related undefined sister species. We observed substantial variation in the distribution of polymorphisms across the pan-genome, including repeat-induced point mutations, diversifying selection and gene gains and losses.We also discovered chromosome-scale inter and intraspecific presence/absence variation of some sequences, suggesting the occurrence of one or more accessory chromosomes or regions that may play a role in host-pathogen interactions. The presence of known pathogenicity effector loci SnToxA, SnTox1, and SnTox3 varied substantially among isolates. Three P. nodorum isolates lacked functional versions for all three loci, whereas three P. avenae isolates carried one or both of the SnTox1 and SnTox3 genes, indicating previously unrecognized potential for discovering additional effectors in the P. nodorum-wheat pathosystem. We utilized the pangenomic comparative analysis to improve the prediction of pathogenicity effector candidates, recovering the three confirmed effectors among our top-ranked candidates. We propose applying this pan-genomic approach to identify the effector repertoire involved in other host-microbe interactions involving necrotrophic pathogens in the Pezizomycotina
Cardiac resynchronization therapy in heart failure patients with atrial fibrillation
Cardiac resynchronization therapy (CRT) is an important device-based, non-pharmacological approach that has shown, in large randomized trials, to improve left ventricular (LV) function and reduce both morbidity and mortality rates in selected patients affected by advanced heart failure (HF): New York Heart Association (NYHA) functional class III–IV, reduced LV systolic function with an ejection fraction (EF) ≤35%, QRS duration ≥120 ms, on optimal medical therapy, and who were in sinus rhythm. For the first time, the latest ESC and AHA/ACC/HRS Guidelines have considered atrial fibrillation (AF) patients, who constitute an important subgroup of HF patients, as eligible to receive CRT. Nevertheless, these Guidelines did not include a strategy for defining differentiated approaches according to AF duration or burden. In this review, the authors explain in which way AF may interfere with adequate CRT delivery, how to manage different AF burden, and finally present a brief overview on the effects of CRT in AF patients
RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria
- …
