446 research outputs found

    Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae.

    No full text
    Combination therapy that includes artemisinin derivatives cures most falciparum malaria infections. Lowering transmission by reducing gametocyte infectivity would be an additional benefit. To examine the effect of such therapy on transmission, Gambian children with Plasmodium falciparum malaria were treated with standard regimens of chloroquine or pyrimethamine-sulfadoxine alone or in combination with 1 or 3 doses of artesunate. The infectivity to mosquitoes of gametocytes in peripheral blood was determined 4 or 7 days after treatment. Infection of mosquitoes was observed in all treatment groups and was positively associated with gametocyte density. The probability of transmission was lowest in those who received pyrimethamine-sulfadoxine and 3 doses of artesunate, and it was 8-fold higher in the group that received pyrimethamine-sulfadoxine alone. Artesunate reduced posttreatment infectivity dramatically but did not abolish it completely. The study raises questions about any policy to use pyrimethamine-sulfadoxine alone as the first-line treatment for malaria

    Lower precision for higher accuracy: precision and resolution exploration for shallow water equations

    No full text
    Accurate forecasts of future climate with numerical models of atmosphere and ocean are of vital importance. However, forecast quality is often limited by the available computational power. This paper investigates the acceleration of a C-grid shallow water model through the use of reduced precision targeting FPGA technology. Using a double-gyre scenario, we show that the mantissa length of variables can be reduced to 14 bits without affecting the accuracy beyond the error inherent in the model. Our reduced precision FPGA implementation runs 5.4 times faster than a double precision FPGA implementation, and 12 times faster than a multi-Threaded CPU implementation. Moreover, our reduced precision FPGA implementation uses 39 times less energy than the CPU implementation and can compute a 100×100 grid for the same energy that the CPU implementation would take for a 29×29 grid

    Validating optimisations for chaotic simulations

    No full text
    It is non-trivial to optimise computations of chaotic systems since slightly perturbed simulations diverge exponentially over time due to the well-known butterfly effect if bit-reproducible results are not achieved. Therefore, two model setups that show the same quality in the representation of a chaotic system will show uncorrelated behaviour if integrated long enough, hence it is challenging to check whether a given optimisation degrades model quality. Most models in computational fluid dynamics show chaotic behaviour. In this paper we focus on models of atmosphere and ocean that are vital for predictions of future weather and climate. Since forecast quality is usually limited by the available computational power, optimisation is highly desirable. We describe a new method for accepting or rejecting an optimised implementation of a reconfigurable design to simulate dynamics of a chaotic system. We apply this method to optimise numerical precision to a minimal level of stencil computations that can be used in an idealised ocean model, and show the performance improvements gained on an FPGA. The proposed method enables precision reduction for the FPGA so that it computes up to 9 times faster with 6 times lower energy consumption than an implementation on the same device with double precision arithmetic, while ensuring the optimised design to have acceptable numerical behaviour

    Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF

    Get PDF
    We present the results of a systematic search for galaxies in the redshift range z = 6 - 9, within the new, deep, near-infrared imaging of the Hubble Ultra Deep Field provided by the Wide Field Camera 3 (WFC3) on HST. We have performed full SED fitting to the optical+infrared photometry of all high-redshift galaxy candidates detected at greater than 5-sigma in at least one of the WFC3/IR broad-band filters. After rejection of contaminants, the result is a sample of 49 galaxies with primary redshift solutions z > 5.9. Our sample, selected without recourse to specific colour cuts, re-selects all but the faintest one of the 16 z-drops selected by Oesch et al. (2009), recovers all 5 of the Y-drops reported by Bouwens et al. (2009), and adds a further 29 galaxy candidates, of which 12 lie beyond z = 6.3, and 4 lie beyond z = 7. We also present confidence intervals on our photometric redshift estimates, and caution that acceptable low-redshift (z < 2) solutions exist for 28 out of the 37 galaxies at z > 6.3, and for all 8 galaxy candidates at z > 7.5. Nevertheless, the very highest redshift candidates appear to be strongly clustered in the field. We derive new estimates of the ultraviolet galaxy luminosity function at z = 7 and z = 8. Where our results are most robust, at a characteristic luminosity M(1500) ~ -19.5 (AB), we find that the comoving number density of galaxies declines by a factor of ~ 2.5 between z = 6 and z = 7, and by a further factor of ~ 2 by z = 8. These results suggest that it is difficult for the observed population of high-redshift star-forming galaxies to achieve reionisation by z ~ 6 without a significant contribution from galaxies well below the detection limits, plus alterations in the escape fraction of ionising photons and/or continued vigorous star formation at z > 15.Comment: 25 Pages, Accepted for publication in MNRA

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    Little change in the sizes of the most massive galaxies since z = 1

    Full text link
    Recent reports suggest that elliptical galaxies have increased their size dramatically over the last ~8 Gyr. This result points to a major re-think of the processes dominating the latetime evolution of galaxies. In this paper we present the first estimates for the scale sizes of brightest cluster galaxies (BCGs) in the redshift range 0.8 < z < 1.3 from an analysis of deep Hubble Space Telescope imaging, comparing to a well matched local sample taken from the Local Cluster Substructure Survey at z ~ 0.2. For a small sample of 5 high redshift BCGs we measure half-light radii ranging from 14 - 53 kpc using de Vaucuoleurs profile fits, with an average determined from stacking of 32.1 \pm 2.5 kpc compared to a value 43.2 \pm 1.0 kpc for the low redshift comparison sample. This implies that the scale sizes of BCGs at z = 1 are ~ 30% smaller than at z = 0.25. Analyses comparing either Sersic or Petrosian radii also indicate little or no evolution between the two samples. The detection of only modest evolution at most out to z = 1 argues against BCGs having undergone the large increase in size reported for massive galaxies since z = 2 and in fact the scale-size evolution of BCGs appears closer to that reported for radio galaxies over a similar epoch. We conclude that this lack of size evolution, particularly when coupled with recent results on the lack of BCG stellar mass evolution, demonstrates that major merging is not an important process in the late time evolution of these systems. The homogeneity and maturity of BCGs at z = 1 continues to challenge galaxy evolution models.Comment: Accepted for publication in MNRA

    The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts

    Get PDF
    We present the results of a new, ultra-deep, near-infrared imaging survey executed with the Hawk-I imager at the ESO VLT, of which we make all the data public. This survey, named HUGS (Hawk-I UDS and GOODS Survey), provides deep, high-quality imaging in the K and Y bands over the CANDELS UDS and GOODS-South fields. We describe here the survey strategy, the data reduction process, and the data quality. HUGS delivers the deepest and highest quality K-band images ever collected over areas of cosmological interest, and ideally complements the CANDELS data set in terms of image quality and depth. The seeing is exceptional and homogeneous, confined to the range 0.38"-0.43". In the deepest region of the GOODS-S field, (which includes most of the HUDF) the K-band exposure time exceeds 80 hours of integration, yielding a 1-sigma magnitude limit of ~28.0 mag/sqarcsec. In the UDS field the survey matches the shallower depth of the CANDELS images reaching a 1-sigma limit per sq.arcsec of ~27.3mag in the K band and ~28.3mag in the Y-band, We show that the HUGS observations are well matched to the depth of the CANDELS WFC3/IR data, since the majority of even the faintest galaxies detected in the CANDELS H-band images are also detected in HUGS. We present the K-band galaxy number counts produced by combining the HUGS data from the two fields. We show that the slope of the number counts depends sensitively on the assumed distribution of galaxy sizes, with potential impact on the estimated extra-galactic background light (abridged).Comment: Accepted for publication on Astronomy and Astrophysic

    The properties of (sub)millimetre-selected galaxies as revealed by CANDELS HST WFC3/IR imaging in GOODS-South

    Full text link
    We have exploited the HST CANDELS WFC3/IR imaging to study the properties of (sub-)mm galaxies in GOODS-South. After using the deep radio and Spitzer imaging to identify galaxy counterparts for the (sub-)mm sources, we have used the new CANDELS data in two ways. First, we have derived improved photometric redshifts and stellar masses, confirming that the (sub-)mm galaxies are massive (=2.2x10^11 M_solar) galaxies at z=1-3. Second, we have exploited the depth and resolution of the WFC3/IR imaging to determine the sizes and morphologies of the galaxies at rest-frame optical wavelengths, fitting two-dimensional axi-symmetric Sersic models. Crucially, the WFC3/IR H-band imaging enables modelling of the mass-dominant galaxy, rather than the blue high-surface brightness features which often dominate optical (rest-frame UV) images of (sub-)mm galaxies, and can confuse visual morphological classification. As a result of this analysis we find that >95% of the rest-frame optical light in almost all of the (sub-)mm galaxies is well-described by either a single exponential disk, or a multiple-component system in which the dominant constituent is disk-like. We demonstrate that this conclusion is consistent with the results of high-quality ground-based K-band imaging, and explain why. The massive disk galaxies which host luminous (sub-)mm emission are reasonably extended (r_e=4 kpc), consistent with the sizes of other massive star-forming disks at z~2. In many cases we find evidence of blue clumps within the sources, with the mass-dominant disk becoming more significant at longer wavelengths. Finally, only a minority of the sources show evidence for a major galaxy-galaxy interaction. Taken together, these results support the view that most (sub-)mm galaxies at z~2 are simply the most extreme examples of normal star-forming galaxies at that era.Comment: 30 pages, 9 figure
    corecore