71 research outputs found

    Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    Get PDF
    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs

    The CAESAR New Frontiers Mission: Comet Surface Sample Acquisition and Preservation

    Get PDF
    NASA recently selected the Comet Astrobiology Exploration Sample Return (CAESAR) mission for Phase A study in the New Frontiers Program. This mission will acquire and return to Earth for laboratory analysis at least 80 g of surface material from the nucleus of comet 67P/Churyumov-Gerasimenko (hereafter 67P). CAESAR will characterize the surface region sampled, preserve the sample in a pristine state, and return evolved volatiles by capturing them in a separate gas reservoir. The system protects both volatile and non-volatile components from contamination or alteration thatwould hamper their scientific analysis. Laboratory analyses of comet samples provide unparalleled knowledge about the presolar history through the initial stages of planet formation to the origin of life

    Volatile Analysis by Pyrolysis of Regolith (Vapor) on the Moon using Mass Spectrometry

    Get PDF
    The identification of lunar resources such as water is a fundamental component of the the NASA Vision for Space Exploration. The Lunar Prospector mission detected high concentrations of hydrogen at the lunar poles that may indicate the presence of water or other volatiles in the lunar regolith [1]. One explanation for the presence of enhanced hydrogen in permanently shadowed crater regions is long term trapping of water-ice delivered by comets, asteroids, and other meteoritic material that have bombarded the Moon over the last 4 billion years [2]. It is also possible that the hydrogen signal at the lunar poles is due to hydrogen implanted by the solar wind which is delayed from diffusing out of the regolith by the cold temperatures [3]. Previous measurements of the lunar atmosphere by the LACE experiment on Apollo 17, suggested the presence of cold trapped vola'tiles that were expelled by solar heating [4]. In situ composition and isotopic analyses of the lunar regolith will be required to establish the abundance, origin, and distribution of water-ice and other volatiles at the lunar poles. Volatile Analysis by Pyrolysis of Regolith (VAPoR) on the Moon using mass spectrometry is one technique that should be considered. The VAPoR pyrolysis-mass spectrometer (pyr-MS) instrument concept study was selected for funding in 2007 by the NASA Lunar Sortie Science Opportunities (LSSO) Program. VAPoR is a miniature version of the Sample Analysis at Mars (SAM) instrument suite currently being developed at NASA Goddard for the 2009 Mars Science Laboratory mission (Fig. 1)

    Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity

    Get PDF
    Numerous loose rocks with dimensions of a few centimeters to tens of centimeters and with no obvious physical relationship to outcrop rocks have been observed along the traverse of the Mars Exploration Rover Opportunity. To date, about a dozen of these rocks have been analyzed with Opportunity’s contact instruments, providing information about elemental chemistry (Alpha Particle X‐ray Spectrometer), iron mineralogy and oxidation states (Mössbauer Spectrometer) and texture (Microscopic Imager). These “cobbles” appear to be impact related, and three distinct groups can be identified on the basis of chemistry and mineralogy. The first group comprises bright fragments of the sulfate‐rich bedrock that are compositionally and texturally indistinguishable from outcrop rocks. All other cobbles are dark and are divided into two groups, referred to as the “Barberton group” and the “Arkansas group,” after the first specimen of each that was encountered by Opportunity. Barberton group cobbles are interpreted as meteorites with an overall chemistry and mineralogy consistent with a mesosiderite silicate clast composition. Arkansas group cobbles appear to be related to Meridiani outcrop and contain an additional basaltic component. They have brecciated textures, pointing to an impact‐related origin during which local bedrock and basaltic material were mixed

    Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars

    Get PDF
    The Mars Exploration Rover Opportunity investigated four rocks, informally dubbed Barberton, Santa Catarina, Santorini, and Kasos, that are possible stony meteorites. Their chemical and mineralogical composition is similar to the howardite, eucrite, and diogenite group but with additional metal, similar to mesosiderite silicate clasts. Because of their virtually identical composition and because they appear to represent a relatively rare group of meteorites, they are probably paired. The four rocks were investigated serendipitously several kilometers apart, suggesting that Opportunity is driving across a larger population of similar rock fragments, maybe a meteorite strewn field. Small amounts of ferric Fe are a result of weathering. We did not observe evidence for fusion crusts. Four iron meteorites were found across the same area. Although mesosiderites are stony irons, a genetic link to these irons is unlikely. The stony meteorites probably fell later than the irons. The current atmosphere is sufficiently dense to land such meteorites at shallow entry angles, and it would disperse fragments over several kilometers upon atmospheric breakup. Alternatively, dispersion by spallation from an impacting meteoroid may have occurred. Santa Catarina and a large accumulation of similar rocks were found at the rim of Victoria crater. It is possible that they are associated with the impactor that created Victoria crater, but our limited knowledge about their distribution cannot exclude mere coincidence

    Athena MIMOS II Mossbauer spectrometer investigation

    Get PDF
    Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing materials. The miniature Mössbauer spectrometer MIMOS II is a component of the Athena science payload launched to Mars in 2003 on both Mars Exploration Rover missions. The instrument has two major components: (1) a rover-based electronics board that contains power supplies, a dedicated central processing unit, memory, and associated support electronics and (2) a sensor head that is mounted at the end of the instrument deployment device (IDD) for placement of the instrument in physical contact with soil and rock. The velocity transducer operates at a nominal frequency of 25 Hz and is equipped with two 57Co/Rh Mössbauer sources. The reference source (5 mCi landed intensity), reference target (alpha-Fe2O3 plus alpha-Fe0), and PIN-diode detector are configured in transmission geometry and are internal to the instrument and used for its calibration. The analysis Mössbauer source (150 mCi landed intensity) irradiates Martian surface materials with a beam diameter of 1.4 cm. The backscatter radiation is measured by four PIN-diode detectors. Physical contact with surface materials is sensed with a switch-activated contact plate. The contact plate and reference target are instrumented with temperature sensors. Assuming 18% Fe for Martian surface materials, experiment time is 6–12 hours during the night for quality spectra (i.e., good counting statistics); 1–2 hours is sufficient to identify and quantify the most abundant Fe-bearing phases. Data stored internal to the instrument for selectable return to Earth include Mössbauer and pulse-height analysis spectra (512 and 256 channels, respectively) for each of the five detectors in up to 13 temperature intervals (65 Mössbauer spectra), engineering data for the velocity transducer, and temperature measurements. The total data volume is 150 kB. The mass and power consumption are 500 g (400 g for the sensor head) and 2 W, respectively. The scientific measurement objectives of the Mössbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite, and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mössbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels

    Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum

    Get PDF
    The weathering of meteorites found on Mars involves chemical and physical processes that can provide clues to climate conditions at the location of their discovery. Beginning on sol 1961, the Opportunity rover encountered three large iron meteorites within a few hundred meters of each other. In order of discovery, these rocks have been assigned the unofficial names Block Island, Shelter Island, and Mackinac Island. Each rock presents a unique but complimentary set of features that increase our understanding of weathering processes at Meridiani Planum. Significant morphologic characteristics interpretable as weathering features include (1) a large pit in Block Island, lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; (2) differentially eroded kamacite and taenite lamellae in Block Island and Shelter Island, providing relative timing through crosscutting relationships with deposition of (3) an iron oxide–rich dark coating; (4) regmaglypted surfaces testifying to regions of minimal surface modification, with other regions in the same meteorites exhibiting (5) large‐scale, cavernous weathering (in Shelter Island and Mackinac Island). We conclude that the current size of the rocks is approximate to their original postfall contours. Their morphology thus likely results from a combination of atmospheric interaction and postfall weathering effects. Among our specific findings is evidence supporting (1) at least one possible episode of aqueous acidic exposure for Block Island; (2) ripple migration over portions of the meteorites; (3) a minimum of two separate episodes of wind abrasion; alternating with (4) at least one episode of coating‐forming chemical alteration, most likely at subzero temperatures

    Meteorites on Mars observed with the Mars Exploration Rovers

    Get PDF
    Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. Chondrites have not been identified to date, which may be a result of their lower strengths and probability to survive impact at current atmospheric pressures. Impact craters directly associated with Heat Shield Rock, Barberton, or Santa Catarina have not been observed, but such craters could have been erased by eolian-driven erosion.Additional co-authors: DW Ming, RV Morris, PA de Souza Jr, SW Squyres, C Weitz, AS Yen, J Zipfel, T Economo

    Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Get PDF
    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well‐preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.Additional co-authors: D DesMarais, M Schmidt, NA Cabrol, A Haldemann, Kevin W Lewis, AE Wang, D Blaney, B Cohen, A Yen, J Farmer, R Gellert, EA Guinness, KE Herkenhoff, JR Johnson, G Klingelhöfer, A McEwen, JW Rice Jr, M Rice, P deSouza, J Hurowit

    Characterization and Petrologic Interpretation of Olivine-Rich Basalts at Gusev Crater, Mars

    Get PDF
    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times
    corecore