18 research outputs found

    Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC‐based T estimates show higher correlation to sap flow‐based T than EC‐based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high‐quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data‐based estimates of ecosystem T permitting a data‐driven perspective on the role of plants’ water use for global water and carbon cycling in a changing climate

    A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis

    Get PDF
    We report a medium‐throughput drug‐screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood–brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug‐screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Winds induce CO 2 exchange with the atmosphere and vadose zone transport in a karstic ecosystem

    No full text
    Research on the subterranean CO2 dynamics has focused individually on either surface soils or bedrock cavities, neglecting the interaction of both systems as a whole. In this regard, the vadose zone contains CO2-enriched air (ca. 5% by volume) in the first meters, and its exchange with the atmosphere can represent from 10 to 90% of total ecosystem CO2 emissions. Despite its importance, to date still lacking are reliable and robust databases of vadose zone CO2 contents that would improve knowledge of seasonal-annual aboveground-belowground CO2 balances. Here we study 2.5 years of vadose zone CO2 dynamics in a semiarid ecosystem. The experimental design includes an integrative approach to continuously measure CO2 in vertical and horizontal soil profiles, following gradients from surface to deep horizons and from areas of net biological CO2 production (under plants) to areas of lowest CO2 production (bare soil), as well as a bedrock borehole representing karst cavities and ecosystem-scale exchanges. We found that CO2 followed similar seasonal patterns for the different layers, with the maximum seasonal values of CO2 delayed with depth (deeper more delayed). However, the behavior of CO2 transport differed markedly among layers. Advective transport driven by wind induced CO2 emission both in surface soil and bedrock, but with negligible effect on subsurface soil, which appears to act as a buffer impeding rapid CO2 exchanges. Our study provides the first evidence of enrichment of CO2 under plant, hypothesizing that CO2-rich air could come from root zone or by transport from deepest layers through cracks and fissures.Andalusian regional government project GEOCARBO [P08-RNM-3721]; European Union ERDF funds; Spanish Ministry of Science and Innovation project SOILPROF [CGL2011-15276-E]; Spanish Ministry of Science and Innovation project CARBORAD [CGL2011-27493]; Spanish Ministry of Science and Innovation project GEISpain [CGL2014-52838-C2-1-R]; Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme, DIESEL project [625988]First Published: 3 August 2016; 6 Month Embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Nitrogen and Phosphorus Effect on Sun-Induced Fluorescence and Gross Primary Productivity in Mediterranean Grassland.

    Get PDF
    Sun-Induced fluorescence at 760 nm (F760) is increasingly being used to predict gross primary production (GPP) through light use efficiency (LUE) modeling, even though the mechanistic processes that link the two are not well understood. We analyzed the effect of nitrogen (N) and phosphorous (P) availability on the processes that link GPP and F760 in a Mediterranean grassland manipulated with nutrient addition. To do so, we used a combination of process-based modeling with Soil-Canopy Observation of Photosynthesis and Energy (SCOPE), and statistical analyses such as path modeling. With this study, we uncover the mechanisms that link the fertilization-driven changes in canopy nitrogen concentration (N%) to the observed changes in F760 and GPP. N addition changed plant community structure and increased canopy chlorophyll content, which jointly led to changes in photosynthetic active radiation (APAR), ultimately affecting both GPP and F760. Changes in the abundance of graminoids, (%graminoids) driven by N addition led to changes in structural properties of the canopy such as leaf angle distribution, that ultimately influenced observed F760 by controlling the escape probability of F760 (Fesc). In particular, we found a change in GPP¿F760 relationship between the first and the second year of the experiment that was largely driven by the effect of plant type composition on Fesc, whose best predictor is %graminoids. The P addition led to a statistically significant increase on light use efficiency of fluorescence emission (LUEf), in particular in plots also with N addition, consistent with leaf level studies. The N addition induced changes in the biophysical properties of the canopy that led to a trade-off between surface temperature (Ts), which decreased, and F760 at leaf scale (F760leaf,fw), which increased. We found that Ts is an important predictor of the light use efficiency of photosynthesis, indicating the importance of Ts in LUE modeling approaches to predict GPPThe project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 721995. The authors acknowledge the Alexander von Humboldt Foundation for supporting this research with the Max-Planck Prize to Markus Reichstein, and the EUFAR TA project DEHESHyrE (EU FP7 Program), the EnMAP project “MoReDEHESHyReS” (Contract No. 50EE1621, German Aerospace Center (DLR) and German Federal Ministry of Economic Affairs and Energy), SynerTGE (CGL2015-69095-R, MINECO/FEDER, UE) and FLUχPEC (CGL2012-34383, Spanish Ministry of Economy and Competitiveness). This work was supported by a research grant (18968) from VILLUM FONDE

    Features of patients that died for COVID-19 in a hospital in the south of Mexico: A observational cohort study.

    No full text
    BackgroundDue to the wide spread of SARS-CoV2 around the world, the risk of death in individuals with metabolic comorbidities has dangerously increased. Mexico has a high number of infected individuals and deaths by COVID-19 as well as an important burden of metabolic diseases; nevertheless, reports about features of Mexican individuals with COVID-19 are scarce. The aim of this study was to evaluate demographic features, clinical characteristics and the pharmacological treatment of individuals who died by COVID-19 in the south of Mexico.MethodsWe performed an observational study including the information of 185 deceased individuals with confirmed diagnoses of COVID-19. Data were retrieved from medical records. Categorical data were expressed as proportions (%) and numerical data were expressed as mean ± standard deviation. Comorbidities and overlapping symptoms were plotted as Venn diagrams. Drug clusters were plotted as dendrograms.ResultsThe mean age was 59.53 years. There was a male predominance (60.1%). The mean hospital stay was 4.75 ± 4.43 days. The most frequent symptoms were dyspnea (88.77%), fever (71.42%) and dry cough (64.28%). Present comorbidities included diabetes (60.63%), hypertension (59.57%) and obesity (43.61%). The main drugs used for treating COVID-19 were azithromycin (60.6%), hydroxychloroquine (53.0%) and oseltamivir (27.3%).ConclusionsMexican individuals who died of COVID-19 had shorter hospital stays, higher frequency of shortness of breath, and higher prevalence of diabetes than individuals from other countries. Also, there was a high frequency of off-label use of drugs for their treatment

    The three major axes of terrestrial ecosystem function

    No full text
    The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.ISSN:0028-0836ISSN:1476-468

    Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

    No full text
    Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based detection methods and diverse application prospects. Although remote sensing of SIF is a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, it may be discriminated remotely using highly resolved spectral sensors and state-of-the-art retrieval approaches to separate the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatiotemporally explicit information about vegetation photosynthetic light responses and steady-state behaviour. Progress in this field is accelerating with novel sensor developments, retrieval methods, and modelling advances. This review distills historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based detection systems, and applications of these novel capabilities in assessment of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.JRC.D.5-Food Securit
    corecore