70 research outputs found

    Effect of Yttrium substitution on superconductivity in Bi-2212 textured rods prepared by a LFZ technique

    Get PDF
    In this study, the physical and superconducting properties of the Bi2Sr2Ca1-xYxCu2O8+delta with x=0.0, 0.05, 0.075 0.1, and 0.20 textured superconducting rods prepared by a laser floating zone technique were presented. The effects of Y3+ substitution for Ca2+ have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dc-magnetization, magnetic hysteresis and critical current density calculation by using the Bean''s critical state model. The powder XRD patterns of the samples have shown the Bi-2212 phase is the major one. Along with the powder samples, the textured rod surfaces also were investigated by XRD. The grains found to be well-oriented along the longitudinal rod axis which is a typical result for superconductors prepared by laser floating zone (LFZ) method, has been observed. The best critical temperature, T-C, has been found as 92.9 K for the sample with 0.15Y substitution, under DC magnetic field of 50 Oe in ZFC mode. It has also been observed that the critical current density decreases with increasing Y-substitution. Using those values, the maximum J(C) value has been determined as 2.37 x 10(5) A/cm(2) for the undoped sample

    Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry

    Get PDF
    A series of hybrid networks based on polyhedral oligomeric silsesquioxane (POSS) were prepared by thiol-epoxy click reaction using commercially available octakis-glycidyl-POSS (G-POSS), trimethylolpropane triglycidyl ether, and trimethylolpropane tris(3-mercaptopropionate) as monomers. The click reaction was simply catalyzed by lithium hydroxide which proceeded readily at ambient conditions in very good yields. The incorporation of G-POSS into the network was clearly determined by transmission electron microscopy, FTIR, and 1H-NMR spectroscopy techniques performed with a model study using 1-butane thiol and G-POSS molecules. The homogeneous distribution of G-POSS up to 5 wt% in the hybrid network was apparently confirmed by morphological investigations. By increasing G-POSS content higher than 5 wt%, the heterogeneous dispersion of G-POSS was determined from the tensile strength measurements. The significant decrease in tensile strength was possible due to the agglomeration of G-POSS. On the other hand, thermal properties of hybrid networks were compared together by thermogravimetric analyses, where all samples exhibited one-step degradation in the range of 220–500 °C. The thermal decomposition of hybrid network led to complete degradation of the organic part and favored the formation of stable carbonaceous and inorganic residues as char. Thus, the char yields of hybrid networks were increased to 6.2, 7.8, 10.1, 12.7, and 15.1% by G-POSS loadings from 0 to 15 wt%. This improvement was also a proof of the incorporation of G-POSS into the hybrid networks that resulted in high heat-resistant POSS-based hybrid networks compared to a sample without G-POSS. © 2017, Iran Polymer and Petrochemical Institute

    Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene

    Full text link
    Recovery of recycled acrylonitrile-butadiene-styrene (ABS) through mixing with styrene-ethylene/butylene-styrene (SEBS) has been studied in this paper. To simulate recycled ABS, virgin ABS was processed through 5 cycles, at extreme processing temperatures, 220 degrees C and 260 degrees C. The virgin ABS, the virgin SEBS, the recycled ABS and the mixtures were mechanically, thermally and rheologically characterized after the various cycles of reprocessing in order to evaluate their corresponding properties and correlate them with the number of cycles undergone. With these data and using Computer Aided Engineering (CAE) the injection process was simulated by obtaining the optimal injection process parameters. Mixtures were injected at two temperatures in a sensorised mold correlating the shrinkage of the parts with temperature. The results show that tensile strength of ABS remains practically constant as the number of reprocessing cycles increases, while in the material injected with SEBS the tensile strength decreases. Concerning the Charpy notched impact strength; the values of the ABS reprocessed at 220 degrees C remain more or less unchanged, while the values for 260 C show a significant decrease. The adhesion of the SEBS causes, in both cases, an increase in impact strength. DSC techniques enabled us to observe how the glass transition temperature (T-g) remains more or less constant regardless of the number of cycles or the temperature, whereas the crosslinking is much greater in the samples reprocessed at 260 C. Finally, the viscosity decreases with each cycle and this decrease becomes even more noticeable with the addition of SEBS, and also that the parts molded at lower temperatures have less shrinkage. (c) 2013 Elsevier B.V. All rights reserved.We would like to thank the Vice-Directorate of Research, Development and Innovation of the Polytechnic University of Valencia for the help granted to the project: "Ternary systems research applied to polymeric materials for the upgrading of waste styrene", Ref: 20091056 within the program of First Projects of Investigation (PAID 06-09) where this work is framed.Peydro, MA.; Parres, F.; Crespo AmorĂłs, JE.; Navarro Vidal, R. (2013). Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene. Journal of Materials Processing Technology. 213(8):1268-1283. https://doi.org/10.1016/j.jmatprotec.2013.02.012S12681283213

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→Ό + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→Ό + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Fabrication and evolution of nanoprecursors to produce Bi(Pb)-2212/Ag textured superconducting composites

    No full text
    Bi1.6Pb0.4Sr2CaCu2O8+?+x wt% Ag (x=0, 1, 3, and 5) nanoprecursors were prepared using a coprecipitation method. Microstructure has shown that initial precursors are composed of nanometric particles which rapidly grow with the subsequent thermal treatments. FTIR has allowed following the decomposition path from the precipitate to the final oxides mixture and has been related with the decomposition ranges found in DTA–TGA. After hot-pressing and annealing, these nanoprecursors produce materials with large and well oriented grains, very low porosity, and low amounts of secondary phases. Electrical transport properties have shown that critical temperature values are maintained unchanged independently of Ag content while room temperature resistivity decreases with Ag addition. On the other hand, critical current densities are drastically influenced by Ag, reaching an improvement of about 185% for the 3 wt% Ag-containing samples, compared with the Ag-free ones. © 2015 Elsevier Ltd and Techna Group S.r.l.Gobierno de AragĂłn ENE2014-52105-RThe authors wish to thank the Gobierno de AragĂłn and Fondo Social Europeo (Grupo de Investigacion Consolidado T12) for financial support. A. Sotelo and M. A. Madre acknowledge MINECO-FEDER ( MAT2013-46505-C3-1-R ) for funding. M. A. Madre and H. Amaveda also acknowledge MINECO-FEDER (Project ENE2014-52105-R) for funding. Authors would like to acknowledge the use of Servicio General de Apoyo a la InvestigaciĂłn-SAI, Universidad de Zaragoza
    • 

    corecore