380 research outputs found

    Simulation, Experiment, and Evolution: Understanding Nucleation in Protein S6 Folding

    Full text link
    In this study, we explore nucleation and the transition state ensemble of the ribosomal protein S6 using a Monte Carlo Go model in conjunction with restraints from experiment. The results are analyzed in the context of extensive experimental and evolutionary data. The roles of individual residues in the folding nucleus are identified and the order of events in the S6 folding mechanism is explored in detail. Interpretation of our results agrees with, and extends the utility of, experiments that shift f-values by modulating denaturant concentration and presents strong evidence for the realism of the mechanistic details in our Monte Carlo Go model and the structural interpretation of experimental f-values. We also observe plasticity in the contacts of the hydrophobic core that support the specific nucleus. For S6, which binds to RNA and protein after folding, this plasticity may result from the conformational flexibility required to achieve biological function. These results present a theoretical and conceptual picture that is relevant in understanding the mechanism of nucleation in protein folding.Comment: PNAS in pres

    Biochemical properties of a Pseudomonas aminotransferase involved in caprolactam metabolism

    Get PDF
    The biodegradation of the nylon-6 precursor caprolactam by a strain of Pseudomonas jessenii proceeds via ATP-dependent hydrolytic ring-opening to 6-aminohexanoate. This non-natural ω-amino acid is converted to 6-oxohexanoic acid by an aminotransferase (PjAT) belonging to the fold type I PLP enzymes. To understand the structural basis of 6-aminohexanoatate conversion, we solved different crystal structures and determined the substrate scope with a range of aliphatic and aromatic amines. Comparison with the homologous aminotransferases from Chromobacterium violaceum (CvAT) and Vibrio fluvialis (VfAT) showed that the PjAT enzyme has the lowest KM values (highest affinity) and highest specificity constant (kcat /KM ) with the caprolactam degradation intermediates 6-aminohexanoate and 6-oxohexanoic acid, in accordance with its proposed in vivo function. Five distinct three-dimensional structures of PjAT were solved by protein crystallography. The structure of the aldimine intermediate formed from 6-aminohexanoate and the PLP cofactor revealed the presence of a narrow hydrophobic substrate-binding tunnel leading to the cofactor and covered by a flexible arginine, which explains the high activity and selectivity of the PjAT with 6-aminohexanoate. The results suggest that the degradation pathway for caprolactam has recruited an aminotransferase that is well adapted to 6-aminohexanoate degradation. This article is protected by copyright. All rights reserved

    Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics

    Full text link
    Chevron rollovers of some proteins imply that their logarithmic folding rates are nonlinear in native stability. This is predicted by lattice and continuum G\=o models to arise from diminished accessibilities of the ground state from transiently populated compact conformations under strongly native conditions. Despite these models' native-centric interactions, the slowdown is due partly to kinetic trapping caused by some of the folding intermediates' nonnative topologies. Notably, simple two-state folding kinetics of small single-domain proteins are not reproduced by common G\=o-like schemes.Comment: 10 pages, 4 Postscript figures (will appear on PRL

    DIBMA nanodiscs keep α-synuclein folded

    Get PDF
    α-Synuclein (αsyn) is a cytosolic intrinsically disordered protein (IDP) known to fold into an α-helical structure when binding to membrane lipids, decreasing protein aggregation. Model membrane enable elucidation of factors critically affecting protein folding/aggregation, mostly using either small unilamellar vesicles (SUVs) or nanodiscs surrounded by membrane scaffold proteins (MSPs). Yet SUVs are mechanically strained, while MSP nanodiscs are expensive. To test the impact of lipid particle size on α-syn structuring, while overcoming the limitations associated with the lipid particles used so far, we compared the effects of large unilamellar vesicles (LUVs) and lipid-bilayer nanodiscs encapsulated by diisobutylene/maleic acid copolymer (DIBMA) on αsyn secondary-structure formation, using human-, elephant- and whale -αsyn. Our results confirm that negatively charged lipids induce αsyn folding in h-αsyn and e-αsyn but not in w-αsyn. When a mixture of zwitterionic and negatively charged lipids was used, no increase in the secondary structure was detected at 45 °C. Further, our results show that DIBMA/lipid particles (DIBMALPs) are highly suitable nanoscale membrane mimics for studying αsyn secondary-structure formation and aggregation, as folding was essentially independent of the lipid/protein ratio, in contrast with what we observed for LUVs having the same lipid compositions. This study reveals a new and promising application of polymer-encapsulated lipid-bilayer nanodiscs, due to their excellent efficiency in structuring disordered proteins such as αsyn into nontoxic α-helical structures. This will contribute to the unravelling and modelling aspects concerning protein-lipid interactions and α-helix formation by αsyn, paramount to the proposal of new methods to avoid protein aggregation and disease.info:eu-repo/semantics/publishedVersio

    Breakdown of supersaturation barrier links protein folding to amyloid formation

    Get PDF
    The thermodynamic hypothesis of protein folding, known as the “Anfinsen’s dogma” states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen’s dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer’s and Parkinson’s diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen’s intramolecular folding universe and the intermolecular misfolding universe

    Robust ω-Transaminases by Computational Stabilization of the Subunit Interface

    Get PDF
    Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (Tm app = 62 °C) displayed Tm app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization

    Multiple Folding Pathways of the SH3 domain

    Get PDF
    Experimental observations suggest that proteins follow different pathways under different environmental conditions. We perform molecular dynamics simulations of a model of the SH3 domain over a broad range of temperatures, and identify distinct pathways in the folding transition. We determine the kinetic partition temperature --the temperature for which the SH3 domain undergoes a rapid folding transition with minimal kinetic barriers-- and observe that below this temperature the model protein may undergo a folding transition via multiple folding pathways. The folding kinetics is characterized by slow and fast pathways and the presence of only one or two intermediates. Our findings suggest the hypothesis that the SH3 domain, a protein for which only two-state folding kinetics was observed in previous experiments, may exhibit intermediates states under extreme experimental conditions, such as very low temperatures. A very recent report (Viguera et al., Proc. Natl. Acad. Sci. USA, 100:5730--5735, 2003) of an intermediate in the folding transition of the Bergerac mutant of the alpha-spectrin SH3 domain protein supports this hypothesis.Comment: 16 pages, 4 figures To be published in the "Journal of Molecular Biology

    MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments

    Get PDF
    Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.This work was supported by (i) the European Regional Development Fund (ERDF) through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a CiĂȘncia e a Tecnologia (FCT/MCTES) in the framework of grants POCI-01-0145-FEDER-031173, POCI-01-0145-FEDER-007274, POCI-01-0145-FEDER-031323 (“Institute for Research and Innovation in Health Sciences”), UID/Multi/04046/2013 (BioISI) and PTDC/NEUNMC/2138/2014 (to CMG). SV was funded by the Spanish Ministry of Economy and Competitiveness (BIO2016-78310-R) and by ICREA (ICREA-Academia 2015). ZG and ZB were funded by Slovak research agentures VEGA 02/0145/17, 02/0030/18 and APVV-18-0284. RS was funded by VEGA 02/0163/19. DEO was funded by the Lundbeck Foundation (grant no. R276-2018-671) and the Independent Research Foundation Denmark | Natural Sciences (grant no. 8021-00208B). AP research was supported by UK Dementia Research Institute (RE1 3556) and by ARUK (ARUK-PG2019B-020)
    • 

    corecore