In this study, we explore nucleation and the transition state ensemble of the
ribosomal protein S6 using a Monte Carlo Go model in conjunction with
restraints from experiment. The results are analyzed in the context of
extensive experimental and evolutionary data. The roles of individual residues
in the folding nucleus are identified and the order of events in the S6 folding
mechanism is explored in detail. Interpretation of our results agrees with, and
extends the utility of, experiments that shift f-values by modulating
denaturant concentration and presents strong evidence for the realism of the
mechanistic details in our Monte Carlo Go model and the structural
interpretation of experimental f-values. We also observe plasticity in the
contacts of the hydrophobic core that support the specific nucleus. For S6,
which binds to RNA and protein after folding, this plasticity may result from
the conformational flexibility required to achieve biological function. These
results present a theoretical and conceptual picture that is relevant in
understanding the mechanism of nucleation in protein folding.Comment: PNAS in pres