10 research outputs found

    The Lyman alpha Reference Sample: Extended Lyman alpha Halos Produced at Low Dust Content

    Full text link
    We report on new imaging observations of the Lyman alpha emission line (Lya), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample (LARS). We present images of 14 starburst galaxies at redshifts 0.028 < z < 0.18 in continuum-subtracted Lya, Halpha, and the far ultraviolet continuum. We show that Lya is emitted on scales that systematically exceed those of the massive stellar population and recombination nebulae: as measured by the Petrosian 20 percent radius, RP20, Lya radii are larger than those of Halpha by factors ranging from 1 to 3.6, with an average of 2.4. The average ratio of Lya-to-FUV radii is 2.9. This suggests that much of the Lya light is pushed to large radii by resonance scattering. Defining the "Relative Petrosian Extension" of Lya compared to Halpha, \xi_ext = RP20_Lya / RP20_Ha, we find \xi_ext to be uncorrelated with total Lya luminosity. However \xi_ext is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Lya photons throughout the interstellar medium and drive a large extended Lya halo.Comment: Published in ApJ Letters ~~ 6 pages using emulateapj, 4 figures ~~ Higher-resolution, larger, nicer jpeg versions of Figures 1 and 2 can be found here: http://xayes.org/pub/press_lars.htm

    The Lyman Alpha Reference Sample: V. The impact of neutral ISM kinematics and geometry on Lyman Alpha escape

    Full text link
    We present high-resolution far-UV spectroscopy of the 14 galaxies of the Lyman Alpha Reference Sample; a sample of strongly star-forming galaxies at low redshifts (0.028<z<0.180.028 < z < 0.18). We compare the derived properties to global properties derived from multi band imaging and 21 cm HI interferometry and single dish observations, as well as archival optical SDSS spectra. Besides the Lyman α\alpha line, the spectra contain a number of metal absorption features allowing us to probe the kinematics of the neutral ISM and evaluate the optical depth and and covering fraction of the neutral medium as a function of line-of-sight velocity. Furthermore, we show how this, in combination with precise determination of systemic velocity and good Lyα\alpha spectra, can be used to distinguish a model in which separate clumps together fully cover the background source, from the "picket fence" model named by Heckman et al. (2011). We find that no one single effect dominates in governing Lyα\alpha radiative transfer and escape. Lyα\alpha escape in our sample coincides with a maximum velocity-binned covering fraction of 0.9\lesssim 0.9 and bulk outflow velocities of 50\gtrsim 50 km s1^{-1}, although a number of galaxies show these characteristics and yet little or no Lyα\alpha escape. We find that Lyα\alpha peak velocities, where available, are not consistent with a strong backscattered component, but rather with a simpler model of an intrinsic emission line overlaid by a blueshifted absorption profile from the outflowing wind. Finally, we find a strong anticorrelation between Hα\alpha equivalent width and maximum velocity-binned covering factor, and propose a heuristic explanatory model.Comment: 28 pages, 19 figures, 5 table

    The Lyman Alpha Reference Sample: III. Properties of the Neutral ISM from GBT and VLA Observations

    Full text link
    We present new H I imaging and spectroscopy of the 14 UV-selected star-forming galaxies in the Lyman Alpha Reference Sample (LARS), aimed for a detailed study of the processes governing the production, propagation, and escape of Lyα\alpha photons. New H I spectroscopy, obtained with the 100m Green Bank Telescope (GBT), robustly detects the H I spectral line in 11 of the 14 observed LARS galaxies (although the profiles of two of the galaxies are likely confused by other sources within the GBT beam); the three highest redshift galaxies are not detected at our current sensitivity limits. The GBT profiles are used to derive fundamental H I line properties of the LARS galaxies. We also present new pilot H I spectral line imaging of 5 of the LARS galaxies obtained with the Karl G. Jansky Very Large Array (VLA). This imaging localizes the H I gas and provides a measurement of the total H I mass in each galaxy. In one system, LARS 03 (UGC 8335 or Arp 238), VLA observations reveal an enormous tidal structure that extends over 160 kpc from the main interacting systems and that contains >>109^9 M_{\odot} of H I. We compare various H I properties with global Lyα\alpha quantities derived from HST measurements. The measurements of the Lyα\alpha escape fraction are coupled with the new direct measurements of H I mass and significantly disturbed H I velocities. Our robustly detected sample reveals that both total H I mass and linewidth are tentatively correlated with key Lyα\alpha tracers. Further, on global scales, these data support a complex coupling between Lyα\alpha propagation and the H I properties of the surrounding medium.Comment: Preprint form, 16 figures, accepted in Ap

    The Lyman alpha reference sample. VII. Spatially resolved Hα\alpha kinematics

    Full text link
    We present integral field spectroscopic observations with the Potsdam Multi Aperture Spectrophotometer of all 14 galaxies in the z0.1z\sim 0.1 Lyman Alpha Reference Sample (LARS). We produce 2D line of sight velocity maps and velocity dispersion maps from the Balmer α\alpha (Hα\alpha) emission in our data cubes. These maps trace the spectral and spatial properties of the LARS galaxies' intrinsic Lyα\alpha radiation field. We show our kinematic maps spatially registered onto the Hubble Space Telescope Hα\alpha and Lyman α\alpha (Lyα\alpha) images. Only for individual galaxies a causal connection between spatially resolved Hα\alpha kinematics and Lyα\alpha photometry can be conjectured. However, no general trend can be established for the whole sample. Furthermore, we compute non-parametric global kinematical statistics -- intrinsic velocity dispersion σ0\sigma_0, shearing velocity vshearv_\mathrm{shear}, and the vshear/σ0v_\mathrm{shear}/\sigma_0 ratio -- from our kinematic maps. In general LARS galaxies are characterised by high intrinsic velocity dispersions (54\,km\,s1^{-1} median) and low shearing velocities (65\,km\,s1^{-1} median). vshear/σ0v_\mathrm{shear}/\sigma_0 values range from 0.5 to 3.2 with an average of 1.5. Noteworthy, five galaxies of the sample are dispersion dominated systems with vshear/σ0<1v_\mathrm{shear}/\sigma_0 <1 and are thus kinematically similar to turbulent star forming galaxies seen at high redshift. When linking our kinematical statistics to the global LARS Lyα\alpha properties, we find that dispersion dominated systems show higher Lyα\alpha equivalent widths and higher Lyα\alpha escape fractions than systems with vshear/σ0>1v_\mathrm{shear}/\sigma_0 > 1. Our result indicates that turbulence in actively star-forming systems is causally connected to interstellar medium conditions that favour an escape of Lyα\alpha radiation.Comment: 26 pages, 15 figures, accepted for publication in A&

    The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Get PDF
    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of gsim 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows fescLyαf_\mathrm{esc}^{\mathrm{Ly}\alpha } of 80%; such objects have not previously been reported at low-z

    Soft X-ray to far infrared luminosities ratio in star-forming galaxies: predictions from synthesis models

    Get PDF
    8 pages, 6 figures.-- arXiv:0801.3192 astro-ph pre-print supplied.-- Final full-text version of the paper available at: http://dx.doi.org/10.1051/0004-6361:20078398.[Context] A good correlation has been found in star-forming galaxies, between the soft X-ray and the far infrared or radio luminosities. The soft X-ray emission in star-forming regions is driven by the heating of the diffuse interstellar medium, and by the mechanical energy released by stellar winds and supernova explosions, both directly linked to the strength of the star formation episode.[Aims] We analyze the relation between the soft X-ray and far infrared luminosities as predicted by evolutionary population synthesis models, aiming first to test the validity of the soft X-ray luminosity as a star formation rate estimator, using the already known calibration of the FIR luminosity as a proxy, and second to propose a calibration based on the predictions of evolutionary synthesis models.[Methods] We have computed the soft X-ray and far infrared luminosities expected for a massive starburst as a function of evolutionary state, the efficiency of the conversion of mechanical energy into soft X-ray luminosity, the star formation history (instantaneous or extended) and dust abundance, and we have compared these predictions with observational values for 62 star-forming galaxies taken from the literature.[Results] The observational L_softX/L_FIR ratios are consistent with the model predictions under realistic assumptions (young starbursts, and efficiency in the re-processing of mechanical energy of a few percent), confirming the correlation between the diffuse soft X-ray emission and the star formation episode.[Conclusions] The soft X-ray emission of the diffuse, extended gas surrounding massive star-forming regions, can be used as a star formation rate tracer. The empirical calibrations presented in the literature are supported by the predictions of evolutionary synthesis models, and by the analysis of a larger number of star-forming galaxies. The calibrations are, however, biased towards galaxies dominated by relatively unevolved starbursts.JMMH and HO are partially funded by Spanish MEC grants AYA2004-08260-C03-03 and ESP2005-07714-C03-03. OH is funded by Spanish FPI grant BES-2006-13489. MCS acknowledges funding by Spanish MEC grant AYA2004-02703, and by Spanish Ramón y Cajal fellowship El 01/08/2007.Peer reviewe
    corecore