395 research outputs found

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow

    Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time

    Get PDF
    We used a class of designed peptide detergents to stabilize photosystem I (PS-I) upon extended drying under N(2) on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at −196.15 °C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll−protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-β-D-maltoside and N-octyl-β-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl- AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl- AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins

    A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity

    Get PDF
    International audienceThis paper proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions, reducing the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduced, the learning rate for the covariance matrix can be increased. Consequently, on essentially separable functions, sep-CMA-ES significantly outperforms CMA-ES. For dimensions larger than a hundred, even on the non-separable Rosenbrock function, the sep-CMA-ES needs fewer function evaluations than CMA-ES

    Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx)

    Get PDF
    Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeqNNN. The bla gene encoding TEM-1 β-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene

    Non-Anatomic Proximal Realignment for Recurrent Patellar Dislocation Does Not Sufficiently Prevent Redislocation

    Get PDF
    Several operative techniques have been described for recurrent patellar dislocation. Clinical results vary depending on the procedure and indication. The present study aimed to evaluate the clinical outcome of Insall’s proximal realignment for recurrent patellar dislocation at mid-term follow-up. Forty-five patients were reviewed with a mean follow-up period of 49 months after having undergone Insall’s procedure. Outcome measures included reports of redislocations, complications, patient-reported outcome scores (Kujala, Tegner activity scale) and subjective assessment. No statistically significant improvements (p < 0.05) in patient-reported outcome measures were noted. Sixteen patients (35%) had poor to fair results using the Kujala score. Subjective assessment revealed that 12 patients (27%) were dissatisfied with the outcome of their surgery and would not undergo the same procedure. Ten patients (22%) had suffered from redislocation at the latest follow-up. In 4 cases (9%), intra-articular knee hematoma occurred which required arthroscopic intervention. The overall mid-term outcome of the present study shows low patient satisfaction. Non-anatomic realignment for recurrent patellar dislocation does not adequately prevent redislocation

    Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity

    Get PDF
    Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance

    Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes

    Get PDF
    discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology

    Integrative DNA Methylation and Gene Expression Analyses Identify DNA Packaging and Epigenetic Regulatory Genes Associated with Low Motility Sperm

    Get PDF
    In previous studies using candidate gene approaches, low sperm count (oligospermia) has been associated with altered sperm mRNA content and DNA methylation in both imprinted and non-imprinted genes. We performed a genome-wide analysis of sperm DNA methylation and mRNA content to test for associations with sperm function. (NCBI 1788). There was a trend among altered expression of these epigenetic regulatory genes and RPMM DNA methylation class.Using integrative genome-wide approaches we identified CpG methylation profiles and mRNA alterations associated with low sperm motility

    Linking the functions of unrelated proteins using a novel directed evolution domain insertion method

    Get PDF
    We have successfully developed a new directed evolution method for generating integral protein fusions comprising of one domain inserted within another. Creating two connections between the insert and accepting parent domain can result in the inter-dependence of the separate protein activities, thus providing a general strategy for constructing molecular switches. Using an engineered transposon termed MuDel, contiguous trinucleotide sequences were removed at random positions from the bla gene encoding TEM-1 β-lactamase. The deleted trinucleotide sequence was then replaced by a DNA cassette encoding cytochrome b562 with differing linking sequences at each terminus and sampling all three reading frames. The result was a variety of chimeric genes encoding novel integral fusion proteins that retained TEM-1 activity. While most of the tolerated insertions were observed in loops, several also occurred close to the termini of α-helices and β-strands. Several variants conferred a switching phenotype on Escherichia coli, with bacterial tolerance to ampicillin being dependent on the presence of haem in the growth medium. The magnitude of the switching phenotype ranged from 4- to 128-fold depending on the insertion position within TEM-1 and the linker sequences that join the two domains
    corecore