388 research outputs found
Thermodynamics of C incorporation on Si(100) from ab initio calculations
We study the thermodynamics of C incorporation on Si(100), a system where
strain and chemical effects are both important. Our analysis is based on
first-principles atomistic calculations to obtain the important lowest energy
structures, and a classical effective Hamiltonian which is employed to
represent the long-range strain effects and incorporate the thermodynamic
aspects. We determine the equilibrium phase diagram in temperature and C
chemical potential, which allows us to predict the mesoscopic structure of the
system that should be observed under experimentally relevant conditions.Comment: 5 pages, 3 figure
Contribution of commercial fish species to human mercury exposure: an evaluation near the Mid-Atlantic Ridge
Fish consumption is frequently associated with the prevention of some human diseases, being simultaneously a major pathway of mercury (Hg) exposure. Therefore, the aim of the study was to evaluate the contribution of 28 commercial fish species to the human Hg exposure in the Azores archipelago (Portuguese region with highest fish consumption per capita). These species potentially contributed on average to 7.47 mg of Hg per capita, although low Hg levels had been detected in fish. Mora moro and Zeus faber exceeded the maximum permitted for fish consumption (> 0.5 μg g−1 ww) even though they were not the species contributing the most to human Hg exposure. On the other hand, Katsuwonus pelamis was the main contributor due to increased fish landings. Furthermore, an increase in Hg content with trophic level has been suggested, as carnivore fish exhibited higher Hg levels than omnivores. In addition, demersal fish generally presented higher Hg concentration (although non-significant) than pelagic ones, possibly related with increased Hg values of their prey at this depth. Notwithstanding, THQ (Target Hazard Quotient) being < 1 for all species indicates that the daily human exposure to Hg via fish consumption is not likely to cause any negative health risks.publishe
A 16th century shipwreck mercury legacy and present mercury bioaccumulation in intertidal species
publishe
Multiwavelength observations of a giant flare on CN Leonis I. The chromosphere as seen in the optical spectra
Flares on dM stars contain plasmas at very different temperatures and thus
affect a wide wavelength range in the electromagnetic spectrum. While the
coronal properties of flares are studied best in X-rays, the chromosphere of
the star is observed best in the optical and ultraviolet ranges. Therefore,
multiwavelength observations are essential to study flare properties throughout
the atmosphere of a star. We analysed simultaneous observations with UVES/VLT
and XMM-Newton of the active M5.5 dwarf CN Leo (Gl 406) exhibiting a major
flare. The optical data cover the wavelength range from 3000 to 10000 Angstrom.
From our optical data, we find an enormous wealth of chromospheric emission
lines occurring throughout the spectrum. We identify a total of 1143 emission
lines, out of which 154 are located in the red arm, increasing the number of
observed emission lines in this red wavelength range by about a factor of 10.
Here we present an emission line list and a spectral atlas. We also find line
asymmetries for H I, He I, and Ca II lines. For the last, this is the first
observation of asymmetries due to a stellar flare. During the flare onset,
there is additional flux found in the blue wing, while in the decay phase,
additional flux is found in the red wing. We interpret both features as caused
by mass motions. In addition to the lines, the flare manifests itself in the
enhancement of the continuum throughout the whole spectrum, inverting the
normal slope for the net flare spectrum.Comment: 15 pages, accepted by A&
Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records
The most powerful explosions on the Sun [...] drive the most severe
space-weather storms. Proxy records of flare energies based on SEPs in
principle may offer the longest time base to study infrequent large events. We
conclude that one suggested proxy, nitrate concentrations in polar ice cores,
does not map reliably to SEP events. Concentrations of select radionuclides
measured in natural archives may prove useful in extending the time interval of
direct observations up to ten millennia, but as their calibration to solar
flare fluences depends on multiple poorly known properties and processes, these
proxies cannot presently be used to help determine the flare energy frequency
distribution. Being thus limited to the use of direct flare observations, we
evaluate the probabilities of large-energy solar explosions by combining solar
flare observations with an ensemble of stellar flare observations. We conclude
that solar flare energies form a relatively smooth distribution from small
events to large flares, while flares on magnetically-active, young Sun-like
stars have energies and frequencies markedly in excess of strong solar flares,
even after an empirical scaling with the mean activity level of these stars. In
order to empirically quantify the frequency of uncommonly large solar flares
extensive surveys of stars of near-solar age need to be obtained, such as is
feasible with the Kepler satellite. Because the likelihood of flares larger
than approximately X30 remains empirically unconstrained, we present indirect
arguments, based on records of sunspots and on statistical arguments, that
solar flares in the past four centuries have likely not substantially exceeded
the level of the largest flares observed in the space era, and that there is at
most about a 10% chance of a flare larger than about X30 in the next 30 years.Comment: 14 pages, 3 figures (in press as of 2012/06/18); Journal of
Geophysical Research (Space Physics), 201
Multi-wavelength observations of Proxima Centauri
We report simultaneous observations of the nearby flare star Proxima Centauri
with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and
X-ray observations cover the star's quiescent state, as well as its flaring
activity and allow us to probe the stellar atmospheric conditions from the
photosphere into the chromosphere, and then the corona during its different
activity stages. Using the X-ray data, we investigate variations in coronal
densities and abundances and infer loop properties for an intermediate-sized
flare. The optical data are used to investigate the magnetic field and its
possible variability, to construct an emission line list for the chromosphere,
and use certain emission lines to construct physical models of Proxima
Centauri's chromosphere.
We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA
during the more active states of Proxima Centauri. For the intermediate flare,
we find two secondary flare events that may originate in neighbouring loops,
and discuss the line asymmetries observed during this flare in H i, He i, and
Ca ii lines. The high time-resolution in the H alpha line highlights strong
temporal variations in the observed line asymmetries, which re-appear during a
secondary flare event. We also present theoretical modelling with the stellar
atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&
Persistent activation of the ζ isoform of protein kinase C in the maintenance of long-term potentiation
Long-term potentiation in the CA1 region of the hippocampus, a model for memory formation in the brain, is divided into two phases. A transient process (induction) is initiated, which then generates a persistent mechanism (maintenance) for enhancing synaptic strength. Protein kinase C (PKC), a gene family of multiple isozymes, may play a role in both induction and maintenance. In region CA1 from rat hippocampal slices, most of the isozymes of PKC translocated to the particulate fraction 15 sec after a tetanus. The increase of PKC in the particulate fraction did not persist into the maintenance phase of long-term potentiation. In contrast, a constitutively active kinase, PKM, a form specific to a single isozyme (ζ), increased in the cytosol during the maintenance phase. The transition from translocation of PKC to formation of PKM may help to explain the molecular mechanisms of induction and maintenance of long-term potentiation
Coronal properties of the EQ Peg binary system
The activity indicators of M dwarfs are distinctly different for early and
late types. The coronae of early M dwarfs display high X-ray luminosities and
temperatures, a pronounced inverse FIP effect, and frequent flaring to the
extent that no quiescent level can be defined in many cases. For late M dwarfs,
fewer but more violent flares have been observed, and the quiescent X-ray
luminosity is much lower. To probe the relationship between coronal properties
with spectral type of active M dwarfs, we analyze the M3.5 and M4.5 components
of the EQ Peg binary system in comparison with other active M dwarfs of
spectral types M0.5 to M5.5. We investigate the timing behavior of both
components of the EQ Peg system, reconstruct their differential emission
measure, and investigate the coronal abundance ratios based on emission-measure
independent line ratios from their Chandra HETGS spectra. Finally we test for
density variations in different states of activity. The X-ray luminosity of EQ
Peg A (M3.5) is by a factor of 6-10 brighter than that of EQ Peg B (M4.5). Like
most other active M dwarfs, the EQ Peg system shows an inverse FIP effect. The
abundances of both components are consistent within the errors; however, there
seems to be a tendency toward the inverse FIP effect being less pronounced in
the less active EQ Peg B when comparing the quiescent state of the two stars.
This trend is supported by our comparison with other M dwarfs. As the X-ray
luminosity decreases with later spectral type, so do coronal temperatures and
flare rate. The amplitude of the observed abundance anomalies, i.e. the inverse
FIP effect, declines; however, clear deviations from solar abundances remain.Comment: 14 pages, accepted by A&
Optical power transmission in a polygon mirror-based swept source optical coherence tomography system
Swept Source Optical Coherence Tomography (SS-OCT) relies on the rapid tuning of a broadband light source to produce narrow laser linewidths. Imaging speed is governed by the sweeping frequency of the source and the axial resolution is given by the total bandwidth generated. Mechanical, free space methods, employing rotating polygonal mirrors with a pair of telescopically arranged lenses, can achieve tuning speeds in excess of 100 kHz. Their success relies upon maximising the light throughput of the swept spectrum by reducing the effects of aberration and vignetting caused by the lens design and the geometrical properties of the polygon respectively. However, these properties impose constrictions on the spectral filter’s design and care must be taken when building the filter to avoid unnecessarily limiting the performance of the system. This paper presents some of the initial stages of a much larger study into the optimisation of such systems.
Theoretical work has been confirmed by experimental observations and compared with ideal simulations for a spectral filter consisting of a dispersive element, a double lens telescope, arranged in a Littman configuration, and a 72-facet, off-axis polygon mirror with end reflector. A non-linear relationship between the linewidth’s location on the telescope in time with the rotation of the polygon was observed and a first approximation for the tuned wavelength with respect to the polygon rotation angle was found. These observations, coupled with ongoing research, will lead to a complete description of polygon based scanners and how their performance can be optimised in future design
- …