250 research outputs found

    Physical limitations of travel time based shallow water tomography

    Get PDF
    Travel-time-based tomography is a classical method for inverting sound-speed perturbations in an arbitrary environment. A linearization procedure enables relating travel-time perturbations to sound-speed perturbations through a kernel matrix. Thus travel-time-based tomography essentially relies on the inversion of the kernel matrix and is commonly called ‘linear inversion. In practice, its spatial resolution is limited by the number of resolved and independent arrivals, which is a basic linear algebra requirement for linear inversion performance. Physically, arrival independency is much more difficult to determine since it is closely related to the sound propagating channel characteristics. This paper presents a brief review of linear inversion and shows that, in deep water, the number of resolved arrivals is equal to the number of independent arrivals, while in shallow water the number of independent arrivals can be much smaller than the number of resolved arrivals. This implies that in shallow water there are physical limitations to the number of independent travel times. Furthermore, those limitations are explained through the analysis of an equivalent environment with a constant sound speed. The results of this paper are of central importance for the understanding of travel-time-based shallow water tomography

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at √s=7 TeV

    No full text
    The ALICE experiment at the LHC has studied inclusive J/ψ production at central and forward rapidities in pp collisions at √s=7 TeV. In this Letter, we report on the first results obtained detecting the J/ψ through the dilepton decay into e+e− and μ+μ− pairs in the rapidity ranges |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero pT. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity Lint=5.6 nb−1 and the number of signal events is NJ/ψ=352±32(stat.)±28(syst.); the corresponding figures in the dimuon channel are Lint=15.6 nb−1 and NJ/ψ=1924±77(stat.)±144(syst.). The measured production cross sections are σJ/ψ(|y|<0.9)=10.7±1.0(stat.)±1.6(syst.)−2.3+1.6(syst.pol.)μb and σJ/ψ(2.5<y<4)=6.31±0.25(stat.)±0.76(syst.)−1.96+0.95(syst.pol.)μb. The differential cross sections, in transverse momentum and rapidity, of the J/ψ were also measured

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET

    Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    Inclusive transverse momentum spectra of primary charged particles in Pb–Pb collisions at √sNN=2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0–5% and 70–80% of the hadronic Pb–Pb cross section. The measured charged particle spectra in |η|<0.8 and 0.3<pT<20 GeV/c are compared to the expectation in pp collisions at the same sNN, scaled by the number of underlying nucleon–nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAA. The result indicates only weak medium effects (RAA≈0.7) in peripheral collisions. In central collisions, RAA reaches a minimum of about 0.14 at pT=6–7 GeV/c and increases significantly at larger pT. The measured suppression of high-pT particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb–Pb collisions at the LHC

    Two-pion Bose–Einstein correlations in central Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The first measurement of two-pion Bose–Einstein correlations in central Pb–Pb collisions at √sNN=2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC

    Neutral pion and η meson production in proton–proton collisions at √s=0.9 TeV and s=√7 TeV

    No full text
    he first measurements of the invariant differential cross sections of inclusive π0 and η meson production at mid-rapidity in proton–proton collisions at s=0.9 TeV and s=7 TeV are reported. The π0 measurement covers the ranges 0.4<pT<7 GeV/c and 0.3<pT<25 GeV/c for these two energies, respectively. The production of η mesons was measured at s=√7 TeV in the range 0.4<pT<15 GeV/c. Next-to-Leading Order perturbative QCD calculations, which are consistent with the π0 spectrum at s=0.9 TeV, overestimate those of π0 and η mesons at s=√7 TeV, but agree with the measured η/π0 ratio at s=√7 TeV

    Heavy flavour decay muon production at forward rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at √s=7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint=16.5 nb−1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5<y<4, over the transverse momentum range 2<pt<12 GeV/c. The results are compared to predictions based on perturbative QCD calculations

    Inclusive J/ψ production in pp collisions at √s=2.76 TeV

    No full text
    The ALICE Collaboration has measured inclusive J/ψ production in pp collisions at a center-of-mass energy √s=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are Linte=1.1 nb−1 and Lintμ=19.9 nb−1, and the corresponding signal statistics are NJ/ψe+e−=59±14 and NJ/ψμ+μ−=1364±53. We present dσJ/ψ/dy for the two rapidity regions under study and, for the forward-y range, d2σJ/ψ/dydpt in the transverse momentum domain 0<pt<8 GeV/c. The results are compared with previously published results at s=7 TeV and with theoretical calculations
    corecore