159 research outputs found

    Role of intrinsic renal cells versus infiltrating cells in glomerular crescent formation

    Get PDF
    Role of intrinsic renal cells versus infiltrating cells in glomerular crescent formation.BackgroundStudies were undertaken to characterize the cellular composition that occurs in glomeruli and the tubulointerstitium of a passive model of complement-independent crescentic nephritis in mice.MethodsGlomerulonephritis was induced by the injection of antibody to whole rabbit glomeruli, and tissue was examined histologically at 7, 14 and 28days.ResultsMice developed proteinuria, glomerular crescents, and progressive glomerulosclerosis and tubulointerstitial fibrosis. The majority of the cells within the crescents appeared to be intrinsic ezrin-positive epithelial cells of visceral or parietal origin. Many of the ezrin positive cells were proliferating and expressing the PDGF receptor. Despite expression of the macrophage adhesive protein, osteopontin, the early crescents were devoid of infiltrating macrophages, T cells or myofibroblasts, which could be explained by the finding that the Bowman's capsule remained intact. Tubulointerstitial damage also occurred, and included tubular dilation and atrophy, periglomerular and patchy interstitial infiltration and interstitial fibrosis with increased interstitial deposition of type IV collagen and laminin. Interstitial infiltrating cells included macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, and activated myofibroblasts. Tubular osteopontin expression was increased in the areas of tubulointerstitial damage and was associated with interstitial macrophage infiltration.ConclusionsWe describe an experimental model of complement-independent murine crescentic nephritis associated with tubulointerstitial injury. Proliferating glomerular epithelial cells are the main cellular components of the crescents in this model

    Urinary Transforming Growth Factor-beta 1 as a marker of response to immunosuppressive treatment, in patients with crescentic nephritis

    Get PDF
    BACKGROUND: Crescentic nephritis is characterized by formation of cellular crescents that soon become fibrotic and result in irreversible damage, unless an effective immunosuppressive therapy is rapidly commenced. TGF-β(1 )is involved in the development of crescents through various pathways. The aim of this study was to identify whether the determination of urinary TGF-β(1 )levels in patients with crescentic nephritis could be used as a marker of response to treatment. METHODS: Fifteen patients with crescentic nephritis were included in the study. The renal expression of TGF-β(1 )was estimated in biopsy sections by immunohistochemistry and urinary TGF-β(1 )levels were determined by quantitative sandwich enzyme immunoassay (EIA). TGF-β(1 )levels were determined at the time of renal biopsy, before the initiation of immunosuppressive treatment (corticosteroids, cyclophosphamide and plasma exchange). Twelve patients with other types of proliferative glomerulonephritis and ten healthy subjects were used as controls. RESULTS: Improvement of renal function with immunosuppressive therapy was observed in 6 and stabilization in 4 patients (serum creatinine from 3.2 ± 1.5 to 1.4 ± 0.1 mg/dl and from 4.4 ± 1.2 to 4.1 ± 0.6 mg/dl, respectively). In 5 patients, with severe impairment of renal function who started on dialysis, no improvement was noted. The main histological feature differentiating these 5 patients from others with improved or stabilized renal function was the percentage patients with poor response to treatment were the percentage of glomeruli with crescents and the presence of ruptured Bowman's capsule and glomerular necrosis. Urinary TGF-β(1 )levels were significantly higher in patients who showed no improvement of renal function with immunosuppressive therapy (930 ± 126 ng/24 h vs. 376 ± 84 ng/24 h, p < 0.01). TGF-β(1 )was identified in crescents and tubular epithelial cells, whereas a significant correlation of TGF-β(1 )immunostaining with the presence of fibrocellular cresents was observed (r = 0.531, p < 0,05). CONCLUSION: Increased TGF-β(1 )renal expression and urinary excretion that is related to the response to immunosuppressive therapy was observed in patients with crescentic nephritis. Evaluation of urinary TGF-β(1 )levels may be proved a useful marker of clinical outcome in patients with crescentic nephritis

    Conditional Ablation of Macrophages Halts Progression of Crescentic Glomerulonephritis

    Get PDF
    The presence of macrophages in inflamed glomeruli of rat kidney correlates with proliferation and apoptosis of resident glomerular mesangial cells. We assessed the contribution of inflammatory macrophages to progressive renal injury in murine crescentic glomerulonephritis (GN). Using a novel transgenic mouse (CD11b-DTR) in which tissue macrophages can be specifically and selectively ablated by minute injections of diphtheria toxin, we depleted renal inflammatory macrophages through days 15 and 20 of progressive crescentic GN. Macrophage depletion reduced the number of glomerular crescents, improved renal function, and reduced proteinuria. Morphometric analysis of renal tubules and interstitium revealed a marked attenuation of tubular injury that was associated with reduced proliferation and apoptosis of tubular cells. The population of interstitial myofibroblasts decreased after macrophage depletion and interstitial fibrosis also decreased. In the presence of macrophages, interstitial myofibroblasts exhibited increased levels of both proliferation and apoptosis, suggesting that macrophages act to support a population of renal myofibroblasts in a high turnover state and in matrix deposition. Finally, deletion of macrophages reduced CD4 T cells in the diseased kidney. This study demonstrates that macrophages are key effectors of disease progression in crescentic GN, acting to regulate parenchymal cell populations by modulating both cell proliferation and apoptosis

    Osteopontin: A Novel Regulator at the Cross Roads of Inflammation, Obesity and Diabetes

    Get PDF
    Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity

    Quantitative trait analysis of the development of pulmonary tolerance to inhaled zinc oxide in mice

    Get PDF
    BACKGROUND: Individuals may develop tolerance to the induction of adverse pulmonary effects following repeated exposures to inhaled toxicants. Previously, we demonstrated that genetic background plays an important role in the development of pulmonary tolerance to inhaled zinc oxide (ZnO) in inbred mouse strains, as assessed by polymorphonuclear leukocytes (PMNs), macrophages, and total protein in bronchoalveolar lavage (BAL) phenotypes. The BALB/cByJ (CBy) and DBA/2J (D2) strains were identified as tolerant and non-tolerant, respectively. The present study was designed to identify candidate genes that control the development of pulmonary tolerance to inhaled ZnO. METHODS: Genome-wide linkage analyses were performed on a CByD2F2 mouse cohort phenotyped for BAL protein, PMNs, and macrophages following 5 consecutive days of exposure to 1.0 mg/m(3 )inhaled ZnO for 3 hours/day. A haplotype analysis was carried out to determine the contribution of each quantitative trait locus (QTL) and QTL combination to the overall BAL protein phenotype. Candidate genes were identified within each QTL interval using the positional candidate gene approach. RESULTS: A significant quantitative trait locus (QTL) on chromosome 1, as well as suggestive QTLs on chromosomes 4 and 5, for the BAL protein phenotype, was established. Suggestive QTLs for the BAL PMN and macrophage phenotypes were also identified on chromosomes 1 and 5, respectively. Analysis of specific haplotypes supports the combined effect of three QTLs in the overall protein phenotype. Toll-like receptor 5 (Tlr5) was identified as an interesting candidate gene within the significant QTL for BAL protein on chromosome 1. Wild-derived Tlr5-mutant MOLF/Ei mice were tolerant to BAL protein following repeated ZnO exposure. CONCLUSION: Genetic background is an important influence in the acquisition of pulmonary tolerance to BAL protein, PMNs, and macrophages following ZnO exposure. Promising candidate genes exist within the identified QTL intervals that would be good targets for additional studies, including Tlr5. The implications of tolerance to health risks in humans are numerous, and this study furthers the understanding of gene-environment interactions that are likely to be important factors from person-to-person in regulating the development of pulmonary tolerance to inhaled toxicants

    Established and Newly Proposed Mechanisms of Chronic Cyclosporine Nephropathy

    Get PDF
    Cyclosporine (CsA) has improved patient and graft survival rates following solid-organ transplantation and has shown significant clinical benefits in the management of autoimmune diseases. However, the clinical use of CsA is often limited by acute or chronic nephropathy, which remains a major problem. Acute nephropathy depends on the dosage of CsA and appears to be caused by a reduction in renal blood flow related to afferent arteriolar vasoconstriction. However, the mechanisms underlying chronic CsA nephropathy are not completely understood. Activation of the intrarenal renin-angiotensin system (RAS), increased release of endothelin-1, dysregulation of nitric oxide (NO) and NO synthase, up-regulation of transforming growth factor-beta1 (TGF-β1), inappropriate apoptosis, stimulation of inflammatory mediators, enhanced innate immunity, endoplasmic reticulum stress, and autophagy have all been implicated in the pathogenesis of chronic CsA nephropathy. Reducing the CsA dosage or using other renoprotective drugs (angiotensin II receptor antagonist, mycophenolate mofetil, and statins, etc.) may ameliorate chronic CsA-induced renal injury. This review discusses old and new concepts in CsA nephropathy and preventive strategies for this clinical dilemma

    2022 Thai Hypertension Society guidelines on home blood pressure monitoring

    No full text
    Abstract In 2021, the Universal Health Coverage Payment Scheme of Thailand approved home blood pressure monitoring (HBPM) devices for reimbursement. National utilization of HBPM devices will begin in 2022. This article provides the recommendations for HBPM from the Thai Hypertension Society. In this report, the authors review the benefits of HBPM and recommend confirming the diagnosis of hypertension by HBPM. Devices for HBPM should be the automated and validated upper arm cuff devices. HBPM should be ideally done for seven consecutive days before each clinic visit and take at least two readings (1 min apart) in the morning and before going to bed. The average blood pressure (BP) of 125–134/75–84 mmHg is classified as high normal BP and hypertension is BP of 135/85 mmHg or more. Target BP levels depend on the age of the patients; that is, < 125/75 mmHg for patients aged 18–65 years old, and <135/85 mmHg for patients over 65 years of age
    • …
    corecore