3,815 research outputs found

    Commentaries: His Life

    Get PDF

    Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation

    Full text link
    Semantic Segmentation using deep convolutional neural network pose more complex challenge for any GPU intensive task. As it has to compute million of parameters, it results to huge memory consumption. Moreover, extracting finer features and conducting supervised training tends to increase the complexity. With the introduction of Fully Convolutional Neural Network, which uses finer strides and utilizes deconvolutional layers for upsampling, it has been a go to for any image segmentation task. In this paper, we propose two segmentation architecture which not only needs one-third the parameters to compute but also gives better accuracy than the similar architectures. The model weights were transferred from the popular neural net like VGG19 and VGG16 which were trained on Imagenet classification data-set. Then we transform all the fully connected layers to convolutional layers and use dilated convolution for decreasing the parameters. Lastly, we add finer strides and attach four skip architectures which are element-wise summed with the deconvolutional layers in steps. We train and test on different sparse and fine data-sets like Pascal VOC2012, Pascal-Context and NYUDv2 and show how better our model performs in this tasks. On the other hand our model has a faster inference time and consumes less memory for training and testing on NVIDIA Pascal GPUs, making it more efficient and less memory consuming architecture for pixel-wise segmentation.Comment: 8 page

    Total Recall: Understanding Traffic Signs using Deep Hierarchical Convolutional Neural Networks

    Full text link
    Recognizing Traffic Signs using intelligent systems can drastically reduce the number of accidents happening world-wide. With the arrival of Self-driving cars it has become a staple challenge to solve the automatic recognition of Traffic and Hand-held signs in the major streets. Various machine learning techniques like Random Forest, SVM as well as deep learning models has been proposed for classifying traffic signs. Though they reach state-of-the-art performance on a particular data-set, but fall short of tackling multiple Traffic Sign Recognition benchmarks. In this paper, we propose a novel and one-for-all architecture that aces multiple benchmarks with better overall score than the state-of-the-art architectures. Our model is made of residual convolutional blocks with hierarchical dilated skip connections joined in steps. With this we score 99.33% Accuracy in German sign recognition benchmark and 99.17% Accuracy in Belgian traffic sign classification benchmark. Moreover, we propose a newly devised dilated residual learning representation technique which is very low in both memory and computational complexity

    Students’ Rating: Is it a Measure of an Effective Teaching or Best Gauge of Learning?

    Get PDF
    AbstractThis paper discusses the issue of how students’ rating could reflect on the effectiveness of teaching or gauge students’ learning. Student ratings of instruction are not the best gauge of learning. To boost student ratings we have created an evidence of their learning. Ratings of overall teaching effectiveness are moderately correlated with independent measures of student learning and achievement. At one time, it was considered contentious to administer student rating forms. Now such forms have become commonplace because it makes sense to survey students to find out what they think about their experiences in the class over the term. Also new suggestions that reflect on students’ learning and creative thinking were proposed here and consequently students rating form has been updated

    Identifying Unmaintained Projects in GitHub

    Full text link
    Background: Open source software has an increasing importance in modern software development. However, there is also a growing concern on the sustainability of such projects, which are usually managed by a small number of developers, frequently working as volunteers. Aims: In this paper, we propose an approach to identify GitHub projects that are not actively maintained. Our goal is to alert users about the risks of using these projects and possibly motivate other developers to assume the maintenance of the projects. Method: We train machine learning models to identify unmaintained or sparsely maintained projects, based on a set of features about project activity (commits, forks, issues, etc). We empirically validate the model with the best performance with the principal developers of 129 GitHub projects. Results: The proposed machine learning approach has a precision of 80%, based on the feedback of real open source developers; and a recall of 96%. We also show that our approach can be used to assess the risks of projects becoming unmaintained. Conclusions: The model proposed in this paper can be used by open source users and developers to identify GitHub projects that are not actively maintained anymore.Comment: Accepted at 12th International Symposium on Empirical Software Engineering and Measurement (ESEM), 10 pages, 201
    • …
    corecore