12 research outputs found

    Solid-phase microextraction/gas chromatography–mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles

    Get PDF
    A complete characterization of the different physical chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and Zeta potential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of nanoparticles (NPs) has been recently introduced [1,2]. BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a nanomaterial surface and an organic –and by extension biological- entity. The present work develops further the BSAI approach of and optimizes a solid-phase microextraction – gas chromatography mass spectrometry (SPME/GC-MS) method, which is applied to measure the adsorption properties of different nanomaterials taking into account their specific surface area. This approach gives thus a better defined quantification of the adsorption properties on NPs. To optimize the SPME/GC-MS method, we investigated the various aspects of the process including: kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NPs surface, and optimization of NPs concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The results demonstrated that this detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and pre-requisite to the application of BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to any further conclusions on their potential impact on health.JRC.I.4-Nanobioscience

    Solid-phase microextraction/gas chromatography–mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles

    Get PDF
    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671–675, 2010; Xia et al. ACS Nano 5(11):9074–9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic—and by extension biological—entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography–mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO(2) NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further conclusions on their potential impact on health. [Figure: see text
    corecore