1,390 research outputs found

    Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration

    Get PDF
    A major goal of personalized medicine is to pre-symptomatically identify individuals at high risk for disease using knowledge of each individual's particular genetic profile and constellation of environmental risk factors. With the identification of several well-replicated risk factors for age-related macular degeneration (AMD), the leading cause of legal blindness in older adults, this previously unreachable goal is beginning to seem less elusive. However, recently developed algorithms have either been much less accurate than expected, given the strong effects of the identified risk factors, or have not been applied to independent datasets, leaving unknown how well they would perform in the population at large. We sought to increase accuracy by using novel modeling strategies, including multifactor dimensionality reduction (MDR) and grammatical evolution of neural networks (GENN), in addition to the traditional logistic regression approach. Furthermore, we rigorously designed and tested our models in three distinct datasets: a Vanderbilt-Miami (VM) clinic-based case-control dataset, a VM family dataset, and the population-based Age-related Maculopathy Ancillary (ARMA) Study cohort. Using a consensus approach to combine the results from logistic regression and GENN models, our algorithm was successful in differentiating between high- and low-risk groups (sensitivity 77.0%, specificity 74.1%). In the ARMA cohort, the positive and negative predictive values were 63.3% and 70.7%, respectively. We expect that future efforts to refine this algorithm by increasing the sample size available for model building, including novel susceptibility factors as they are discovered, and by calibrating the model for diverse populations will improve accuracy

    Diabetes and pancreatic cancer survival: A prospective cohort-based study

    Get PDF
    BACKGROUND: Diabetes is a risk factor for pancreatic cancer but its association with survival from pancreatic cancer is poorly understood. Our objective was to investigate the association of diabetes with survival among pancreatic cancer patients in a prospective cohort-based study where diabetes history was ascertained before pancreatic cancer diagnosis. METHODS: We evaluated survival by baseline (1993–2001) self-reported diabetes history (n=62) among 504 participants that developed exocrine pancreatic cancer within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality were estimated using Cox proportional hazards model, adjusted for age, sex, body mass index, race, smoking, and tumour stage (local, locally advanced, and metastatic). RESULTS: The multivariable-adjusted HR for mortality comparing participants with diabetes to those without was 1.52 (95% CI=1.14–2.04, P-value <0.01). After excluding those diagnosed with pancreatic cancer within 3 years of study enrolment, HR for mortality among those with diabetes was 1.45 (95% CI=1.06–2.00, P-value=0.02). CONCLUSIONS: Using prospectively collected data, our findings indicate that diabetes is associated with worse survival among patients with pancreatic cancer

    Sleep quality in middle-aged and elderly Chinese: distribution, associated factors and associations with cardio-metabolic risk factors

    Get PDF
    Background Poor sleep quality has been associated with increased risk of heart disease, diabetes and mortality. However, limited information exists on the distribution and determinants of sleep quality and its associations with cardio-metabolic risk factors in Chinese populations. We aimed to evaluate this in the current study. Methods A cross-sectional survey conducted in 2005 of 1,458 men and 1,831 women aged 50–70 years from urban and rural areas of Beijing and Shanghai. Using a questionnaire, sleep quality was measured in levels of well, common and poor. Comprehensive measures of socio-demographical and health factors and biomarkers of cardio-metabolic disease were recorded. These were evaluated in association with sleep quality using logistic regression models. Results Half of the population reported good sleep quality. After adjusting for potential confounders, women and Beijing residents had almost half the probability to report good sleep quality. Good physical and mental health (good levels of self-rated health (OR 2.48; 95%CI 2.08 to 2.96) and no depression (OR 4.05; 95%CI 3.12 to 5.26)) related to an increased chance of reporting good sleep quality, whereas short sleep duration (<7 hrs OR 0.10; 95%CI 0.07 to 0.14)) decreased it substantially. There were significant associations between levels of sleep quality and concentrations of plasma insulin, total and LDL cholesterol, and index of insulin resistance. Conclusion Levels of good sleep quality in middle-age and elderly Chinese were low. Gender, geographical location, self-rated health, depression and sleep quantity were major factors associated with sleep quality. Prospective studies are required to distil the factors that determine sleep quality and the effects that sleep patterns exert on cardio-metabolic health

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. METHODS: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization

    The "Persuadable Middle" on Same-Sex Marriage: Formative Research to Build Support among Heterosexual College Students

    Full text link
    Same-sex marriage is a controversial policy issue that affects the welfare of gay and lesbian couples throughout the USA. Considerable research examines opinions about same-sex marriage; however, studies have not investigated the covariates of the “persuadable middle”— those individuals who are neutral or unsure about their views. This group of people is often the target of same-sex marriage campaigns, yet they have received no empirical attention.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89607/1/Woodford et al 2011 Persuadable Middle.pd
    corecore