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Abstract

A major goal of personalized medicine is to pre-symptomatically identify individuals at high risk for disease using
knowledge of each individual’s particular genetic profile and constellation of environmental risk factors. With the
identification of several well-replicated risk factors for age-related macular degeneration (AMD), the leading cause of legal
blindness in older adults, this previously unreachable goal is beginning to seem less elusive. However, recently developed
algorithms have either been much less accurate than expected, given the strong effects of the identified risk factors, or have
not been applied to independent datasets, leaving unknown how well they would perform in the population at large. We
sought to increase accuracy by using novel modeling strategies, including multifactor dimensionality reduction (MDR) and
grammatical evolution of neural networks (GENN), in addition to the traditional logistic regression approach. Furthermore,
we rigorously designed and tested our models in three distinct datasets: a Vanderbilt-Miami (VM) clinic-based case-control
dataset, a VM family dataset, and the population-based Age-related Maculopathy Ancillary (ARMA) Study cohort. Using a
consensus approach to combine the results from logistic regression and GENN models, our algorithm was successful in
differentiating between high- and low-risk groups (sensitivity 77.0%, specificity 74.1%). In the ARMA cohort, the positive and
negative predictive values were 63.3% and 70.7%, respectively. We expect that future efforts to refine this algorithm by
increasing the sample size available for model building, including novel susceptibility factors as they are discovered, and by
calibrating the model for diverse populations will improve accuracy.
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Introduction

Age-related macular degeneration (AMD) attacks the central

retina and causes debilitating vision loss in the approximately 1.5

million Americans affected by advanced forms of disease[1].Ge-

netic variants CFH Y402H[2–4], ARMS2 A69S[5,6], C3

R102G[7–9], and cigarette smoking[10] are now well-accepted

risk factors for AMD, and CFB R32Q is associated with decreased

AMD risk[11–13]. This recent success in identifying both genetic

and environmental modifiers of AMD susceptibility has prompted

the development of algorithms for identifying individuals at

particularly high risk for AMD based on some combination of

environmental and genetic risk factor data[11,14–18] (Table 1).

Comparisons between algorithms have been made difficult due to

differences in which risk factors are included in the model,

differences in the type of modeling strategy used, and the variety of

measures used to describe the success of the algorithms. However,

it is obvious that no current algorithm correctly classifies AMD

case-control status 100% of the time.

The level of accuracy needed to reach clinical utility is

debatable and depends on a variety of factors, including whether

the underlying goal is presymptomatic diagnosis or screening for

increased risk of future disease. The receiver operating character-

istic (ROC) curve plots sensitivity vs. 1-specificity and can be used
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to evaluate how well a continuous variable (e.g. probability of a

genetic disease calculated from a genetic algorithm) can discrim-

inate between binary outcomes (e.g. case-control status). A

common rule of thumb for evaluating clinical tests is that the

area under the ROC curve (AUC) should be .0.75 for screening

individuals at increased risk for disease and .0.99 for presymp-

tomatic diagnosis[19]. Of the three previous studies reporting the

AUC in AMD, all exceeded the threshold set for screening[16–

18], though the authors were cautious in raising the possibility that

an accurate genetic test for AMD could be developed. An

absolutely critical step for gauging the clinical utility of any

algorithm is to determine its accuracy in a completely untested

dataset of individuals at risk for AMD. This step mimics the

situation that would occur should an algorithm begin to be used in

clinical practice, and the importance of performing this validation

step cannot be overstated. To our knowledge, none of these studies

tested their models in an independent dataset. The single study

that did have separate training and testing datasets reported 70%

sensitivity and 50% specificity in their testing dataset[11]. While

this represents unprecedented success in modeling a complex

genetic disease and would potentially be useful in identifying high-

risk persons, a specificity of 50% makes a ‘‘low-risk’’ result difficult

to interpret.

Therefore, in developing a new algorithm, our goals were

twofold: 1) to increase the accuracy to a level approaching clinical

usefulness, and 2) to carry out a true test of model validation by

thoroughly testing the new algorithm in an independent,

population-based dataset. We chose to model the effects of age,

smoking, CFH Y402H, ARMS2 A69S, C3 R102G, and CFB

R32Q using logistic regression, multifactor dimensionality reduc-

tion (MDR), and grammatical evolution of neural networks

(GENN) in multiple distinct datasets. First, we constructed these

models in 4/5 of the Vanderbilt-Miami (VM) case-control study

population and then tested the models on the remaining 1/5 of

this dataset and another VM dataset of families containing

multiple affected individuals. For a more rigorous test of how the

models would perform in the population as a whole, we then

applied them to the Age-Related Maculopathy Ancillary (ARMA)

Study, which was drawn primarily from the Health ABC cohort, a

population-based longitudinal study of highly functional elderly

individuals randomly selected from Medicare roles in Memphis,

TN. Among other measures, overall correct classification rate,

AUC, positive predictive value (PPV), and negative predictive

value (NPV) were used to evaluate the success of the models in this

final testing set.

Methods

Ethics Statement
Approval for the study was obtained from Institutional Review

Boards at VanderbiltUniversity, University of Miami, and

University of Tennessee Health Science Center. All study

participants gave written informed consent to participate in this

study, and this research adhered to the tenets of the Declaration of

Helsinki.

Study Populations
It is essential to construct a model in one dataset and then apply

the model in a separate dataset to avoid bias in model evaluation.

With this in mind, we initially used one dataset for training

(referred to as the Vanderbilt-Miami (VM) training dataset), and

three independent datasets for testing (the VM testing dataset, the

VM family dataset, and the ARMA Study). Later, the analyses

were reversed with the ARMA dataset being used for training and

the VM datasets used for testing.

The VM training dataset was formed by randomly selecting 4/5

of the AMD cases (n = 349) and 4/5 of the controls (n = 216) with

complete risk factor data, who were ascertained through

ophthalmology clinics at Vanderbilt and Duke University Medical

Centers. The remaining 1/5 cases (n = 87) and 1/5 controls

(n = 54) were assigned to the VM testing dataset. The VM family

dataset was used only for testing the models and consisted of 226

families with multiple affected individuals and their unaffected

relatives. There was no overlap of individuals between the VM

training, testing, and family datasets. Individuals not of European

descent (n = 33) were excluded from analysis due to the small

sample size and because allele frequencies of some AMD-

associated variants differ by ancestry[20]. All patients and controls

received an eye exam and had stereoscopic fundus photographs

graded according to a modified version of the Age-Related Eye

Disease Study (AREDS) grading system as described elsewhere

[21,22]. Briefly, grades 1 and 2 represent controls. Grade 1

controls have no evidence of drusen or small non-extensive drusen

without pigmentary abnormalities, while grade 2 controls may

Table 1. Previous studies that developed an AMD algorithm.

Reference Factors in the Model Method(s) Used
Independent Dataset
for Validation? Sensitivity Specificity AUC

Gold et al. 2006[11] CFH, C2, CFB Genetic Algorithm yes 0.74 0.56 .

Hughes et al. 2007[14] CFH, ARMS2, smoking risk score no . . .

Jakobsdottir et al.
2008[15]

CFH, ARMS2, C2, CFB logistic regression no . . .

Jakobsdottir et al.
2008[15]

CFH, ARMS2, C2, age,
gender, smoking

Generalized MDR no 0.70 0.74 .

Jakobsdottir et al.
2009[16]

CFH, ARMS2, C2 logistic regression no . . 0.79

Seddon et al. 2009[17] CFH, ARMS2, C2, CFB, C3,
CFH*supplement treatment group,
age, gender, education, baseline
AMD grade, smoking, BMI

logistic regression no . . 0.83

Gibson et al. 2010[18] CFH, ARMS2, C3, SERPING1, age,
gender, smoking

logistic regression no 0.76 0.76 0.83

doi:10.1371/journal.pone.0017784.t001
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show signs of either extensive small drusen or non-extensive

intermediate drusen and/or pigmentary abnormalities. Grade 3

AMD cases have extensive intermediate drusen or large, soft

drusen with or without drusenoid retinal pigment epithelial

detachment. Grade 4 AMD cases exhibit geographic atrophy

and grade 5 individuals have exudative AMD, which includes

nondrusenoid retinal pigment epithelial detachment, choroidal

neovascularization, and subretinal hemorrhage or disciform

scarring. Individuals were classified according to status in the

more severely affected eye.

The ARMA samples (n = 85 cases, 148 controls) were part of

a prospective cohort from Memphis, TN, aged 70 or older. The

vast majority of participants (86%) were from the Memphis

Health ABC study, which included individuals who did not have

difficulty walking a quarter of a mile or climbing a flight of stairs

at the time of study enrollment[23,24]. The others were drawn

from the general Memphis population ascertained by self-

referral in response to advertising and presentations at

community establishments for the elderly. Because differences

in allele frequencies between ethnic groups have been reported

for some of the genetic variants used in our models,[20] and

there was an insufficient number of blacks available in the VM

dataset on which to build a model (n = 3 with complete risk

factor data), blacks in the ARMA cohort were not included in

any analyses.

Large variation in the demographic characteristics of the

training and testing datasets, though informative about how well

these models may apply to a general population, will reduce the

number of individuals correctly classified in the testing dataset.

Therefore, we carefully compared the testing and training datasets

to determine if they differed substantially for any important

demographic traits (Table 2).

Genotyping
CFH Y402H (rs1061170), ARMS2 A69S (rs10490924), CFB

R32Q (rs641153), and C3 R102G (rs2230199) were genotyped as

part of a Sequenom iPLEXH Goldpool, according to the

manufacturer’s instructions. Three quality control samples were

duplicated within and between plates, and genotypes were checked

for concordance. All genetic variants had a genotyping efficiency

rate of at least 95%. Because the algorithm requires complete risk

factor information, the few samples that did not have complete

genotype information were dropped from analysis. All SNPs were

verified to be in Hardy-Weinberg equilibrium in controls.

Building the Models
Logistic regression, MDR, and GENN were used to build

models of AMD. For the logistic regression analyses, we included

age of examination (in years), smoking (coded ‘‘1’’ for those who

had smoked at least 100 cigarettes, ‘‘0’’ for those who reported

never smoking or smoking less than 100 cigarettes), and CFH

Y402H, ARMS2 A69S, CFB R32Q, and C3 R102G (using

additive encodings for all genetic variants) in the model. Though

other environmental variables (e.g. sex and body mass index

(BMI)[25]) and genetic variants (e.g. polymorphisms in or near the

CFI[26], LIPC[27], and TIMP3[28] genes) may also be associated

with AMD, we chose not to include them in the model, primarily

for two reasons: 1) to minimize the number of parameters the

model estimated we chose only the most robustly associated

genetic and environmental factors with the greatest effect sizes,

and 2) some of the modeling methods we wanted to test (e.g.

MDR) perform optimally with categorical variables, rather than

quantitative traits like BMI. Therefore, the logistic regression

equation was:

g~b0zb1 � Agezb2 � Smokingzb3 � CFH

zb4 � ARMS2zb5 � CFBzb6 � C3

and a rough estimate of the probability of AMD for an individual

can be calculated as:

rough estimate of probability of AMD~
eg

1zeg

Based on the size of the available datasets, we did not include

interactions terms in the model, thereby reducing the number of

parameters that have to be estimated. Once the rough estimate of

probability of AMD was determined for each individual in the

testing dataset, individuals with a probability greater than a

particular threshold were classified as ‘‘high-risk’’, and those below

the threshold were classified as ‘‘low-risk’’. These ‘‘model calls’’

were then compared to the affection status assigned by a clinician,

and the sensitivity, specificity, positive predictive value, negative

predictive value, and overall correct classification rate of the model

were determined. Changing the threshold for the probability of

AMD will change the number of false positives and false negatives

called by the model. Because there was no a priori reason to select

a particular threshold value, we chose 0.5 as a cut-off for our

analyses. After examining the histogram of AMD probabilities by

Table 2. Characteristics of the datasets.

Characteristic VM Training VM Testing VM Families ARMA p-value VM Training vs. ARMA

Cases/Affecteds (#) 349 87 326 85 NA

Controls/Unaffecteds (#) 216 54 86 148 NA

Age of exam [mean (sd)] 73.5 (8.4) 73.1 (8.3) 72.8 (9.4) 79.3 (3.6) ,0.0001

Gender (% Female) 61.1 59.6 67.0 51.5 0.01

% ever Smokers 52.0 56.0 54.6 50.2 0.64

CFH frequency C allele 50.6 48.9 61.9 42.9 0.01

ARMS2 frequency T allele 35.7 31.2 42.4 23.8 ,0.0001

CFB frequency A allele 6.8 7.1 5.2 9.7 0.05

C3 frequency C allele 25.3 26.2 29 25.5 0.93

doi:10.1371/journal.pone.0017784.t002
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true affection status, we raised the threshold to 0.75 in the ARMA

testing dataset in an attempt to increase accuracy. Finally, we used

ROC curves (plots of sensitivity vs. 1-specificity) to determine the

threshold that would have correctly classified the greatest number

of individuals.

For MDR, the number of cases and controls with each

particular susceptibility factor combination was calculated. If the

ratio of cases to controls having this combination in the training

dataset exceeded the total ratio of cases and controls, then

individuals with the same combination in the testing dataset were

called ‘‘high-risk’’. Otherwise, individuals were called ‘‘low-risk’’.

This is the usual metric used to classify individuals as ‘‘high-’’ or

‘‘low-risk’’ by the MDR method[29], and MDR software[30] was

used to generate the counts of cases and controls with each

combination of susceptibility factors in the training dataset.

However, this does not exactly correspond to a ‘‘traditional’’

MDR analysis because: 1) we a priori forced MDR to include our

variables of interest, rather than allowing the software to perform

variable selection and 2) we used completely independent datasets

for testing rather than cross validation. We included smoking and

the CFH, ARMS2, CFB, and C3 variants in the model. Because

MDR works best with susceptibility factors that have only a few

levels, and because we wanted to maintain comparability with the

logistic regression analyses, age of exam was included in the model

coded ‘‘1’’ for individuals in the lowest quantile of age of exam,

‘‘2’’ for those in the second quantile, and so on. One advantage of

this type of MDR model compared to logistic regression is that

there is no need to specify an arbitrary threshold value for

classifying risk status. The major drawbacks are: 1) age cannot be

included in the model as a continuous variable without overly

stratifying the datasets and 2) large sample sizes are needed for

each susceptibility combination to ensure stability of the model.

Grammatical Evolution of Neural Networks (GENN) has been

extensively described[31]. Briefly, neural networks are a robust

and flexible modeling strategy, consisting of input layers, hidden

layers, and an output layer. Each layer contains various nodes

connected by arcs and weighted by some arithmetic function.

When the input data exceed some threshold, the neural network

‘‘fires’’. The goal in our case was to classify individuals as high- or

low-risk for AMD (the output) from genetic and clinical risk factor

data (the inputs). The architecture of the neural network (how the

nodes are connected, the weights on each node, etc.) was

optimized using the process of grammatical evolution. Grammat-

ical evolution begins with an initial random set of neural network

architectures, and the neural networks with the best fitness

(measured in this application by balanced accuracy[32]) are

propagated to the next generation. Random ‘‘mutation’’ and

‘‘crossover’’ events in subsequent generations allow the neural

networks to evolve, and hopefully, reach a final architecture that is

useful in classifying AMD risk level. To maintain comparability

with the other modeling strategies used, we included age of exam

(in quantiles), smoking, and CFH Y402H, ARMS2 A69S, CFB

R32Q, and C3 R102G as inputs for the neural networks. Only

neural networks that contained all 6 factors exactly once were

propagated to the next generation (effectively allowing for

optimization of the weights and arcs, but not allowing variable

selection). The parameter settings for the evolution of the neural

networks were a ‘‘genome size’’ ranging from 25–1000 bits, using

a population size of 5000 ‘‘genomes’’, with probability of a

crossover event set to 0.9, and probability of mutation set to 0.01.

After optimization of the neural networks in the training dataset,

the final best neural network model, as measured by balanced

accuracy in the training dataset, was applied to the testing dataset

and evaluated.

Evaluating the Models
We used AMD case-control status assigned by retinal specialists

after examination of stereoscopic fundus photographs as the gold

standard with which to compare our ‘‘model calls’’ of high- and

low-risk from the three methods. Though the possibility of

clinician misdiagnosis exists, extensive quality control measures

were taken to guard against it, including concordance checks by

multiple graders. In a previous study using a subset of the VM

datasets, concordance among graders was 92% with a kappa

statistic of 0.81, indicating excellent agreement[33].

We defined sensitivity as the number of individuals who were

truly affected with AMD and identified by the algorithm as ‘‘high-

risk’’/total number of true AMD cases as determined by clinician

grading. Specificity equals the number of individuals who were

truly unaffected and called ‘‘low-risk’’/total number of controls.

The overall correct classification rate is the number of true cases

identified as ‘‘high-risk’’ plus the number of controls identified as

‘‘low-risk’’/total number of individuals tested. PPV equals the

percentage of individuals labeled ‘‘high-risk’’ who were true AMD

cases. NPV equals the percentage of individuals labeled ‘‘low-risk’’

who were true controls. Estimates of PPV and NPV from case-

control data are often inflated[34], and can be adjusted by

considering the prevalence of the disease in the population of

interest using the following formulas:

PPV~

sensitivity|prevalence

(sensitivity|prevalence)z (1{prevalence)(1{specificity)½ �

NPV~
specificity(1{prevalence)

specificity(1{prevalence)z prevalence(1{sensitivity)½ �

As the ARMA cohort is primarily population-based, we report

only the unadjusted PPV and NPV in this dataset.

Results

Model Building in the VM Training Dataset
In the logistic regression model built in the VM training dataset,

all six susceptibility factors were significantly associated with AMD

in the direction expected from previous reports in the literature

(Table 3). In the MDR model, there was a clear tendency for

individuals with more risk alleles/risk factors present and fewer

protective alleles to be classified by the model as ‘‘high-risk’’ and

vice versa, as expected (data not shown). GENN separated the

genetic risk factors and the environmental risk factors into two

separate hubs (Figure S1). Of the genetic factors, GENN weighted

CFH Y402H and ARMS2 A69S most heavily, followed by C3

R102G and CFB R32Q. This ranking of the genetic susceptibility

factors mimics the frequency of these factors in our training

dataset. However, it is difficult to infer the relative importance of

each factor to disease from the GENN weights alone because the

weights will change with tweaks to the architecture of the neural

network.

Models Built in the VM Training Dataset Applied to VM
Testing and VM Family Datasets

Of the three methods, the GENN model performed the best

when applied to the VM testing dataset with an overall correct

classification rate of 80.1% (Table 4). GENN correctly classified

more cases than controls (83.9% sensitivity vs. 74.1% specificity).

The logistic regression model was slightly less successful than

Identifying Individuals at High Risk for AMD
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GENN (77.3% overall correct), and followed the same trend of

higher classification rates for cases than controls. The area under

the ROC curve was 0.84 (95% confidence interval 0.81 to 0.88,

Figure S2), which exceeded both the AUC for previously

developed similar algorithms (Table 1) and the recommended

cutoff for screening high-risk individuals[19].

The MDR method did much worse than GENN and logistic

regression with only 59.6% of individuals classified correctly and

20.6% of the individuals not classified at all (denoted ‘‘CNC’’ for

could not classify). When a particular combination of susceptibility

factors is not observed in the training dataset, no decision rule can

be made, and therefore all individuals with that combination in the

testing dataset are CNC. Given the sample size of the available

datasets and the number of factors in the model, the somewhat

decreased performance of the MDR model is not unexpected.

We also examined the agreement between the three methods

using a consensus approach that gives individuals a ‘‘high-risk’’ call

only when at least 2 of the 3 methods indicate increased risk and a

‘‘low-risk’’ call otherwise. Taking the consensus of all three

methods or of the two best-performing individual methods (logistic

regression and GENN) classified fewer people correctly than using

GENN alone and did not improve either the sensitivity or

specificity.

Naı̈ve estimates of PPV and NPV are known to be inaccurate

when calculated from case-control data[34]. We compared the

naı̈ve estimates to adjusted estimates using prevalence rates of

5.5% and 15% (Table 5). As expected, the PPV for each method

decreased, ranging from 12.3 to 17.6 at a prevalence of 5.5% and

from 29.9 to 39.4% at a prevalence of 15%. Notably, the NPV

increased substantially, exceeding 94% for all methods tested at

both prevalence rates.

We next applied the same model to a testing dataset composed

of families with multiple members affected by AMD. In the family

data, logistic regression performed best overall, but only by a small

margin over GENN (overall correct classification rates of 76.9%

and 73.3%, respectively, Table S1). Logistic regression was more

sensitive than GENN, but less specific (sensitivity 84.0% vs. 76.1%,

specificity 50.0% vs. 62.8%, respectively). MDR again had the

poorest accuracy of the three methods (overall correct classifica-

tion 71.4%) with a similar proportion of individuals called CNC

(17.7%). Taking the consensus of logistic regression and GENN

improved the specificity compared to each single method alone

(69.8%), at the expense of lower sensitivity than either single

method (74.5%).

Models Built in the VM Training Dataset Applied to the
ARMA Dataset

For a more realistic measure of how these models apply to the

general population, we tested them in the ARMA dataset. As

expected, the classification rates did decrease, but were still better

than chance. Because the optimal threshold for the probability

cutoff in logistic regression is likely to vary by dataset and this

threshold cannot be determined in advance, we examined three

cut-offs: 1) 0.5, chosen for comparison with the VM testing dataset

analysis 2) 0.75, chosen after examining a histogram of

probabilities by clinician-assigned affection status (data not shown),

and 3) 0.87, chosen because this was the optimal threshold in the

ARMA dataset determined by ROC analysis (Figure S3). Using

the optimal 0.87 threshold, 69.1% of individuals were correctly

classified yielding a sensitivity of 36.5% and specificity of 87.8%

(Table 6). Obviously, decreasing the threshold resulted in

suboptimal classification rates: 60.5% overall correct for a

threshold of 0.75 and 48.9%, worse than chance, for a threshold

of 0.5. This suggests that if the logistic model were to be applied to

a new population, a sample of that population would need to be

tested and the model carefully calibrated before widespread use.

Model calibration strategies have been successfully used to adjust

an algorithm for coronary heart disease that was created in the

Framingham Heart Study for application in six other ethnically

diverse cohorts[35], and we expect that using a similar approach

would increase the accuracy of our algorithm in other populations.

Somewhat surprisingly, the GENN model, which performed the

best in the VM testing dataset, was not as successful in the ARMA

dataset (51.1% overall correct). Though quite good at identifying

cases (76.5% sensitivity), the method was hampered by poor

Table 3. Logistic regression model in the VM training dataset.

Factor Coefficient p-value
Odds
Ratio

95% Confidence
Interval

Age 0.13 ,0.001 1.13 1.10 1.17

Smoking 0.48 0.026 1.61 1.06 2.45

CFH Y402H 1.04 ,0.001 2.84 2.07 3.90

ARMS2 A69S 0.69 ,0.001 2.00 1.47 2.72

CFB R32Q 21.10 ,0.001 0.33 0.18 0.60

C3 R102G 0.41 0.014 1.51 1.09 2.11

Constant 210.48 ,0.001 . . .

doi:10.1371/journal.pone.0017784.t003

Table 4. Classification rates using the VM training dataset for training and VM testing dataset for testing.

Method Sensitivity Specificity Unadjusted PPV Unadjusted NPV % Overall Correct

LR [0.5] 85.1 64.8 79.6 72.9 77.3

MDR 71.8 (58.6) 80.5 (61.1) 86.4 (NA) 62.3 (NA) 75.0 (59.6)

GENN 83.9 74.1 83.9 74.1 80.1

Consensus–LR, MDR, GENN 82.8 74.1 83.7 72.7 79.4

Consensus–LR, GENN 77.0 74.1 82.7 66.7 75.9

PPV = positive predictive value, NPV = negative predictive value, NA = not applicable, LR = logistic regression. Logistic [0.5] indicates the threshold used for determining
model calls in the logistic regression analysis. In this case, all individuals with probabilities $0.5 were given a model call of ‘‘high-risk’’. For MDR 20.6% of the testing
dataset could not be classified. The first entry in the table represents the classification rate considering only the individuals that could be classified in the denominator.
The number in parentheses gives the classification rate considering the entire testing dataset as the denominator. For example, using MDR, 71 individuals who were
actually cases could be classified and of those 51/71 = 71.8% were correctly classified as ‘‘high-risk’’. Considering all cases that were tested, 51/87 = 58.6% were correctly
classified. For the consensus of methods, individuals were called high-risk only if two or more methods classified them as high-risk.
doi:10.1371/journal.pone.0017784.t004
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performance in controls (36.5% specificity). MDR was again the

worst with an overall classification rate of 45.5%, and leaving

18.0% of the data unclassified.

Taking the consensus of logistic regression with the optimal

threshold and GENN resulted in the same sensitivity, specificity,

and overall classification rate as using logistic regression with the

optimal threshold alone (Table 6), as everyone called high-risk by

logistic regression was also labeled high-risk by GENN. Interest-

ingly, if model calibration cannot be performed and we must use

the arbitrary threshold of 0.5 for logistic regression, then taking the

consensus of logistic regression and GENN is more successful than

either method individually.

As a final check of how well the models would apply in

population-based data, we removed all individuals ascertained in

the ARMA cohort who were not part of the Health ABC Study.

This produced very similar results for all methods (Table S2).

Logistic regression at the optimal threshold again had the highest

overall classification rate (70.4%). Assuming no prior knowledge of

the optimal threshold for logistic regression, the most successful

algorithm was again taking the consensus of logistic regression at a

threshold of 0.5 and GENN.

Comparison of VM Training Dataset to the ARMA Dataset
The VM training and ARMA datasets were ascertained using

very different strategies. The VM training dataset was drawn from

ophthalmology, primarily retinal, clinics. The ARMA dataset was

primarily drawn from the Memphis Health ABC cohort, which

randomly sampled those on Medicare rolls. The VM training

dataset had a higher percentage of females, a higher frequency of

CFH and ARMS2 risk alleles, and a lower percentage of CFB

protective alleles (Table 2), as might be expected when comparing

a clinic-based group to the general population. However, though

these differences are not unexpected, they still negatively affect

performance of all three methods, and partially explain the

decreased accuracy observed in the ARMA dataset.

Model Building in the ARMA Dataset
Next, we rebuilt the model using the ARMA dataset.

Unfortunately, with 85 cases, most of whom were AREDS

category 3 (i.e., not advanced AMD), and 148 controls, the ARMA

dataset was somewhat underpowered to detect significant effects of

all the established AMD susceptibility factors we studied. This was

especially apparent in the logistic regression analysis, where only

CFH Y402H and CFB R32Q were significantly associated with

AMD risk (Table 7). The sparseness of data would also be

expected to have a detrimental effect on the other 2 methods,

especially MDR, which depends on large numbers of observations

for each combination of susceptibility factors to ensure stability of

the model. Nonetheless, we still observed a clear trend for those

carrying more risk factors and fewer protective CFB alleles to be

called ‘‘high-risk’’ by MDR. The neural network model was

remarkably similar to the model produced in the VM training

dataset, with the network again containing separate hubs for

Table 5. Comparison of adjusted and unadjusted PPV and NPV in the VM testing dataset.

Method Unadjusted PPV Unadjusted NPV
Adjusted PPV at
Prev = 5.5%

Adjusted NPV at
Prev = 5.5%

Adjusted PPV at
Prev = 15%

Adjusted NPV at
Prev = 15%

LR 0.5 79.6 72.9 12.3 98.7 29.9 96.1

MDR 86.4 62.3 17.6 98.0 39.4 94.2

GENN 83.9 74.1 15.9 98.8 36.4 96.3

Consensus–LR, MDR, GENN 83.7 72.7 15.7 98.7 36.1 96.1

Consensus–LR, GENN 82.7 66.7 14.8 98.2 34.4 94.8

Prev = Prevalence.
doi:10.1371/journal.pone.0017784.t005

Table 6. Classification rates using the VM training dataset for training and the ARMA dataset for testing.

Method Sensitivity Specificity Unadjusted PPV Unadjusted NPV % Overall Correct

LR [0.5] 89.4 25.7 40.9 80.9 48.9

LR [0.75] 62.4 59.5 46.9 73.3 60.5

LR [0.87, Optimal) 36.5 87.8 63.3 70.7 69.1

MDR 68.5 (58.8) 31.4 (25.0) 38.2 (NA) 61.7 (NA) 45.5 (37.3)

GENN 76.5 36.5 43.6 73.0 51.1

Consensus–LR [0.5], MDR, GENN 77.6 33.8 40.2 72.5 49.8

Consensus–LR [0.5], GENN 74.1 41.9 42.3 73.8 53.6

Consensus–LR [0.75], MDR, GENN 64.7 53.4 44.4 72.5 57.5

Consensus–LR [0.75], GENN 61.2 59.5 46.4 72.7 60.1

Consensus–LR [0.87], MDR, GENN 60.0 58.1 45.1 71.7 58.8

Consensus–LR [0.87], GENN 36.5 87.8 63.3 70.7 69.1

Logistic [0.87 Optimal] indicates that the threshold that would correctly classify the most individuals as determined by the ROC curve was applied to the testing dataset.
See notes accompanying Table 4 for further explanation.
doi:10.1371/journal.pone.0017784.t006
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genetic and environmental susceptibility factors, and the same

ranking of weights given to the genetic risk factors (Figure S4).

Models Built in the ARMA Dataset Applied to the VM
Datasets

Since the VM training and testing datasets were created by

randomly assigning 4/5 of individuals for training and 1/5 for

testing, we combined them for the purposes of creating a testing

dataset for models built in the ARMA dataset. Using a probability

threshold of 0.5, logistic regression correctly classified 59.3% of

individuals. Decreasing the threshold drastically improved perfor-

mance. Using the optimal threshold of 0.30 determined by the

ROC curve (Figure S5), 76.2% of individuals were correctly

classified (79.6% sensitivity, 70.7% specificity, Table 8). GENN

performed better than logistic regression using the arbitrary 0.5

threshold with 63.0% of individuals correctly classified, but was

not as successful as logistic regression using the optimal threshold.

MDR performed poorly, leaving 57.2% of the data unclassified,

and only correctly classifying 49.0% of individuals who were given

a result. Taking the consensus of logistic regression and GENN did

not provide a better overall classification rate than using logistic

regression with the optimal threshold alone, but did increase the

specificity (79.6%) at the cost of lowering sensitivity (61.2%).

Discussion

Many strategies have been used by our group and others to

identify individuals at elevated risk for AMD. Whenapplying a

model to a new dataset, we have seen that taking the consensus of

logistic regression and GENN models maximizes the overall

classification rate compared to any single method, when the

optimal threshold for logistic regression is not known. Using this

approach we classified individuals into ‘‘high-‘‘ or ‘‘low-risk’’

groups, with overall correct classification rates of ,76% in the

VM testing data and nearly 70% in the ARMA cohort. These

numbers are impressive, but PPV (the percentage of individuals

labeled ‘‘high-risk’’ who are actually cases) and NPV (the

percentage of individuals labeled ‘‘low-risk’’ who are actually

controls) are generally more informative when considering the

potential clinical usefulness of a new algorithm. Because of the

difficulty in accurately estimating PPV and NPV in case-control

data, it is essential to validate models in population-based cohorts.

In the ARMA cohort, using logistic regression alone produced

identical PPV and NPV results (,63% and ,71%, respectively) as

taking the consensus of logistic regression and GENN models

when the optimal threshold for logistic regression was used.

Remarkably, even using the arbitrary 0.5 threshold for logistic

regression, when taking the consensus with GENN, the PPV

(,42%) and NPV (,74%) were still quite high.

To put our results in perspective, we compared them to three

other screening tools commonly used in clinical practice: the

prostate-specific antigen (PSA) and digital rectal exam (DRE) for

prostate cancer and mammography for breast cancer. A recent

meta-analysis estimated the sensitivity, specificity, and PPV for

PSA at 72.1%, 93.2%, and 25.1%, respectively and at 53.2%,

83.6%, and 17.8% for DRE[36]. Practically speaking, this means

that out of all individuals with an abnormal PSA or DRE result,

only about 1 in 4 or 5 actually has prostate cancer. When the PSA

and DRE are normal, ,90% are cancer-free[36]. Despite the low

PPV, the American Cancer Society recommendsthat physicians

counsel men over 50who are expected to live at least 10 years

about the benefits and risks of PSA tests and DRE and begin

counseling at age 40–45 for men in certain high-risk groups[37].

In a review conducted for the U.S. Preventive Services Task

Force, first mammography sensitivity ranged from 71–96%,

specificity for a single mammographic exam ranged from 94–

97%, and the PPV ranged from 2–22% for abnormal results that

led to further evaluation and 12–78% for abnormal results leading

to biopsy[38]. Again the PPV values are surprisingly low, but the

justification for regular mammograms is bolstered by additional

studies demonstrating lower mortality rates from breast cancer

among women who undergo regular screening. Comparable

prospective studies in AMD would need to show that being able to

identify high-risk individuals leads to better visual outcomes before

widespread screening would be recommended. Such studies, to

Table 7. Logistic regression model in the ARMA dataset.

Factor Coefficient p-value
Odds
Ratio 95% Confidence Interval

Age 0.05 0.22 1.05 0.97 1.14

Smoking 0.41 0.16 1.51 0.85 2.68

CFH Y402H 0.73 ,0.0001 2.08 1.39 3.11

CFB R32Q 20.96 0.02 0.38 0.17 0.86

ARMS2 A69S 0.37 0.12 1.45 0.91 2.31

C3 R102G 20.03 0.89 0.97 0.61 1.53

Constant 25.45 0.10 . . .

doi:10.1371/journal.pone.0017784.t007

Table 8. Classification rates using the ARMA dataset for training and VM training combined with VM testing as the testing dataset.

Method Sensitivity Specificity Unadjusted PPV Unadjusted NPV % Overall Correct

LR [0.5] 37.4 94.8 92.1 48.4 59.3

LR [0.30 Optimal] 79.6 70.7 81.5 68.2 76.2

MDR 48.8 (24.1) 49.4 (15.9) 70.5 (NA) 28.1 (NA) 49.0 (21.0)

GENN 65.4 59.3 72.2 51.4 63.0

Consensus–LR [0.5], MDR, GENN 42.7 90.0 87.3 49.3 60.8

Consensus–LR [0.5], GENN 35.6 94.8 91.7 47.7 58.2

Consensus–LR [0.3], MDR, GENN 65.4 75.9 81.4 57.6 69.4

Consensus–LR [0.3], GENN 61.2 79.6 82.9 56 68.3

For MDR 57.2% of the testing dataset could not be classified. The first entry in the table represents the classification rate considering only the individuals that could be
classified in the denominator. The number in parentheses gives the classification rate considering the entire testing dataset as the denominator.
doi:10.1371/journal.pone.0017784.t008
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our knowledge, have not been conducted for any of the AMD

algorithms described in the literature.

Ultimately, the decision to use a particular algorithm in clinical

practice is a judgment call that must balance the need to flag all

potentially high-risk persons with the cost of falsely labeling some

low-risk individuals as high-risk. Extensive clinical validation

studies, in particular applying potential algorithms to prospective

cohorts, need to be implemented. Furthermore, many other

factors besides clinical validity also deserve significant attention,

including the cost of screening and what can be done to help those

who are classified as high-risk to prevent disease. Though we

believe that it is premature to introduce such an AMD algorithm

to the clinic now, these results demonstrate promise for the

potential of genetic variants in predicting individual risk for

disease.
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