158 research outputs found

    Early cosmic ray research in France

    Get PDF
    International audienceThe French research on cosmic rays in the first half of the 20th century is summarized. The main experiments are described as the discovery of air cosmic ray showers by Pierre Auger. The results obtained at the French altitude laboratories like the "Pic du Midi de Bigorre" are also briefly presented

    Are vertical cosmic rays the most suitable to radio detection ?

    Full text link
    The electric field induced by extensive air showers generated by high energy cosmic rays is considered and, more specifically, its dependence on the shower incident angle. It is shown that for distances between the shower axis and the observation point larger than a few hundred meters, non-vertical showers produce larger fields than vertical ones. This may open up new prospects since, to some extent, the consideration of non-vertical showers modifies the scope of the radio-detection domain.Comment: 8 pages, 4 figure

    Development of a radio-detection method array for the observation of ultra-high energy neutrino induced showers

    Full text link
    The recent demonstration by the CODALEMA Collaboration of the ability of the radio-detection technique for the characterization of UHE cosmic-rays calls for the use of this powerful method for the observation of UHE neutrinos. For this purpose, an adaptation of the existing 21CM Array (China) is presently under achievment. In an exceptionally low electromagnetic noise level, 10160 log-periodic 50-200 MHz antennas sit along two high valleys, surrounded by mountain chains. This lay-out results in 30-60 km effective rock thicnesses for neutrino interactions with low incidence trajectories along the direction of two 4-6 km baselines. We will present first in-situ radio measurements demonstrating that this environment shows particularly favourable conditions for the observation of electromagnetic decay signals of taus originating from the interaction of 10^17-20 eV tau neutrinos.Comment: 4pages, 3 figures, Contribution to appear in the proceedings of ARENA 2008 conferenc

    Réalisation d'un systÚme d'émission-réception 4 canaux dédié au cerveau de rat pour un systÚme RM à 7T

    Get PDF
    International audienceUn systÚme ainsi qu'une bobine d'émission-réception ont été réalisés pour un systÚme RM à 7 T. Ce systÚme d'émission-réception 4 canaux permet de créer un champ magnétique RF B1+ polarisé circulairement. La combinaison constructive des phases des 4 canaux a été démontrée par des images RM

    Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies

    Get PDF
    Studies on the dependence of the rates of ecosystem gas exchange on environmental parameters often rely on the up-scaling of leaf-level response curves ('bottom-up' approach), and/or the down-scaling of ecosystem fluxes ('top-down' approach), where one takes advantage of the natural diurnal covariation between the parameter of interest and photosynthesis rates. Partly independent from environmental variation, molecular circadian clocks drive ∌24 h oscillations in leaf-level photosynthesis, stomatal conductance and other physiological processes in plants under controlled laboratory conditions. If present and of sufficient magnitude at ecosystem scales, circadian regulation could lead to different results when using the bottom-up approach (where circadian regulation exerts a negligible influence over fluxes because the environment is modified rapidly) relative to the top-down approach (where circadian regulation could affect fluxes as it requires the passage of a few hours). Here we dissected the drivers of diurnal net CO2 exchange in canopies of an annual herb (bean) and of a perennial shrub (cotton) through a set of experimental manipulations to test for the importance of circadian regulation of net canopy CO2 exchange, relative to that of temperature and vapor pressure deficit, and to understand whether circadian regulation could affect the derivation of environmental flux dependencies. Contrary to conventional wisdom, we observed how circadian regulation exerted controls over net CO2 exchange that were of similar magnitude to the controls exerted by direct physiological responses to temperature and vapor pressure deficit. Diurnal patterns of net CO2 exchange could only be explained by considering effects of environmental responses combined with circadian effects. Consequently, we observed significantly different results when inferring the dependence of photosynthesis over temperature and vapor pressure deficit when using the top-down and the bottom up approaches.We remain indebted to E. Gerardeau, D. Dessauw, J. Jean, P. Prudent (AĂŻda CIRAD), J.-J. Drevon, C. Pernot (Eco&Sol INRA), B. Buatois, A. Rocheteau (CEFE CNRS), A. Pra, A. Mokhtar and the full Ecotron team, in particular C. Escape, for outstanding technical assistance during experiment set-up, plant cultivation and measurements. Earlier versions of the manuscript benefitted from comments by M. Dietze, B. Medlyn, R. Duursma and Y.-S. Lin. This study benefited from the CNRS human and technical resources allocated to the ECOTRONS Research Infrastructures as well as from the state allocation ‘Investissement d'Avenir’ ANR-11-INBS-0001, ExpeER Transnational Access program, RamĂłn y Cajal fellowships (RYC-2012-10970 to VRD and RYC-2008-02050 to JPF), the Erasmus Mundus Master Course Mediterranean Forestry and Natural Resources Management (MEDfOR) and internal grants from UWS-HIE to VRD and ZALF to AG. We thank the Associate Editor T. Vesala and two anonymous reviewers for their help to improve this manuscript

    Post-starburst galaxies: more than just an interesting curiosity

    Full text link
    From the VIMOS VLT DEEP Survey (VVDS) we select a sample of 16 galaxies with spectra which identify them as having recently undergone a strong starburst and subsequent fast quenching of star formation. These post-starburst galaxies lie in the redshift range 0.510^9.75Msun. They have a number density of 1x10^-4 per Mpc^3, almost two orders of magnitude sparser than the full galaxy population with the same mass limit. We compare with simulations to show that the galaxies are consistent with being the descendants of gas rich major mergers. Starburst mass fractions must be larger than ~5-10% and decay times shorter than ~10^8 years for post-starburst spectral signatures to be observed in the simulations. We find that the presence of black hole feedback does not greatly affect the evolution of the simulated merger remnants through the post-starburst phase. The multiwavelength spectral energy distributions of the post-starburst galaxies show that 5/16 have completely ceased the formation of new stars. These 5 galaxies correspond to a mass flux entering the red-sequence of rhodot(A->Q, PSB) = 0.0038Msun/Mpc^3/yr, assuming the defining spectroscopic features are detectable for 0.35Gyr. If the galaxies subsequently remain on the red sequence, this accounts for 38(+4/-11)% of the growth rate of the red sequence. Finally, we compare our high redshift results with a sample of galaxies with 0.05<z<0.1 observed in the SDSS and UKIDSS surveys. We find a very strong redshift evolution: the mass density of strong post-starburst galaxies is 230 times lower at z~0.07 than at z~0.7.Comment: 18 pages, 12 figures, to match version accepted to MNRAS. Minor reordering of text in places and Sec 2.2 on SPH simulation comparisons expande

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    Get PDF
    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies
    • 

    corecore