14 research outputs found

    ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia. Methods: In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls. Results: We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression. Conclusions: Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS

    HSPGs glypican-1 and glypican-4 are human neuronal proteins characteristic of different neural phenotypes.

    Full text link
    Generating neurons from human stem cells has potential for brain damage therapy and neurogenesis modeling, but current efficacy is limited by culture heterogeneity and the lack of markers. We have previously reported the heparan sulfate proteoglycans (HSPGs) glypican-1 (GPC1) and -4 (GPC4) as the markers of lineage-specific human neural stem cells (hNSCs) and mediators of hNSC lineage potential. Here, we further examined phenotypical characteristics and GPC1 and GPC4 during neural differentiation of hNSCs in the presence of two neurogenic growth factors reported to bind to heparan sulfate: brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor-B (PDGF-B). In hNSC neural cultures, GPC1 and GPC4 were expressed along neurites and cell bodies in long-term (40-60聽days) neural differentiation cultures demonstrating the areas of differential localization-suggesting potentially different functions. Neural differentiation cultures in the presence of BDNF or PDGF-B generated phenotypically different neural cells with BDNF treatment associated with higher GPC4 versus GPC1 expression, increased heterogeneity, and differential neuron subtype marker expression to PDGF-B cultures. PDGF-B cultures exhibited higher levels of spontaneous activity and reduced heterogeneity over long-term culture associated with decreased GPC4. Untreated neural cultures were highly variable, supporting the use of neuroregulatory growth factors for guided differentiation. Targeted siRNA downregulation of GPC1/4 reduced neural differentiation markers and altered response to exogenous BDNF and PDGF-B. This work confirms GPC1 and GPC4 as regulators of human neural differentiation and supports their use as novel markers of neural cell characterization

    The hazard assessment of pulp and paper effluents in the aquatic environment: A review

    No full text
    corecore