73 research outputs found

    Differential expression of ADAMTS -1, -4, -5 and TIMP -3 in rat spinal cord at different stages of acute experimental autoimmune encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is an animal model of inflammatory demyelination, a pathological event common to multiple sclerosis (MS). During CNS inflammation there are alterations in the extracellular matrix (ECM). A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) -1, -4 and -5 are proteases present in the CNS, which are able to cleave the aggregating chondroitin sulphate proteoglycans, aggrecan, phosphacan, neurocan and brevican. It is therefore important to investigate changes in their expression in different stages of EAE induction. We have investigated expression of ADAMTS-1, -4, -5 and Tissue inhibitor of metalloproteinase (TIMP) -3, by real-time RT-PCR. We have also examined protein expression of ADAMTS-1, -4 and -5 by western blotting and immunocytochemistry in spinal cord from animals at different stages of disease progression. Our study demonstrated a decrease in ADAMTS-4 mRNA and protein expression. TIMP-3 was decreased at the mRNA level although protein levels were increased in diseased animals compared to controls. Our study identifies changes in ADAMTS expression during the course of CNS inflammation which may contribute to ECM degradation and disease progression.</p

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Tip60 functions as a potential corepressor of KLF4 in regulation of HDC promoter activity

    Get PDF
    KLF4 is a transcription factor that is highly expressed in the gastrointestinal tract. Previously we have demonstrated that KLF4 represses HDC promoter activity in a gastric cell line through both an upstream Sp1 binding GC box and downstream gastrin responsive elements. However, the mechanism by which KLF4 inhibits HDC promoter is not well defined. In the current study, by using yeast two-hybrid screening, Tip60 was identified as a KLF4 interacting protein. Further coimmunoprecipitation and functional reporter assays support the interaction between these two proteins. In addition, Tip60 and HDAC7, previously shown to interact with each other and repress transcription, inhibited HDC promoter activity in a dose-dependent fashion. Consistently, knock down of Tip60 or HDAC7 gene expression by specific shRNA increased endogenous HDC mRNA level. Co-immunoprecipitation assays showed that HDAC7 was pulled down by KLF4 and Tip60, suggesting that these three proteins form a repressive complex. Further chromatin immuno-precipitation indicated that all three proteins associated with HDC promoter. Two-hour gastrin treatment, known to activate HDC gene expression, significantly decreased the association of KLF4, Tip60 and HDAC7 with HDC promoter, suggesting that gastrin activates HDC gene expression at least partly by decreasing the formation of KLF4/Tip60/HDAC7 repressive complexes at the HDC promoter

    CCL5-glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis

    Get PDF
    The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature

    In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity

    No full text
    In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intra-neuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod (FTY720), dimethyl fumarate (DMF), and their respective metabolites FTY720-Phosphate (-P) and monomethyl fumarate (MMF), can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic Th17 lymphocytes. In vivo, direct and acute (1 hour) administration of 100 mM Glu to the brain stem resulted in a rapid and significant upregulation in neuronal Ca(2+) signaling as well as morphological excitotoxic changes that were attenuated by the NMDA-receptor antagonist MK801. Direct CNS administration of MS drugs prior to Glu significantly delayed or reduced but did not prevent the neuronal Ca(2+) increase or morphological changes. In vitro, prolonged (24 hours) treatment of primary neurons with the fumarates significantly protected against neurotoxicity induced by Glu as well as NMDA, similar to MK801. Furthermore, MMF significantly reduced Glu release from pathogenic Th17 lymphocytes. Overall, these data suggest that MS drugs may mediate neuroprotection via excitotoxicity-modulating effects
    corecore