344 research outputs found

    Optical dielectric function of gold

    Get PDF
    In metal optics gold assumes a special status because of its practical importance in optoelectronic and nano-optical devices, and its role as a model system for the study of the elementary electronic excitations that underlie the interaction of electromagnetic fields with metals. However, largely inconsistent values for the frequency dependence of the dielectric function describing the optical response of gold are found in the literature. We performed precise spectroscopic ellipsometry measurements on evaporated gold, template-stripped gold, and single-crystal gold to determine the optical dielectric function across a broad spectral range from 300 nm to 25 mu m (0.05-4.14 eV) with high spectral resolution. We fit the data to the Drude free-electron model, with an electron relaxation time tau(D) = 14 +/- 3 fs and plasma energy h omega(p) = 8.45 eV. We find that the variation in dielectric functions for the different types of samples is small compared to the range of values reported in the literature. Our values, however, are comparable to the aggregate mean of the collection of previous measurements from over the past six decades. This suggests that although some variation can be attributed to surface morphology, the past measurements using different approaches seem to have been plagued more by systematic errors than previously assumed. DOI:10.1103/PhysRevB.86.23514

    The Far-Infrared Surveyor (FIS) for AKARI

    Full text link
    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, it can simultaneously make a spectral map. This paper summarizes the in-flight technical and operational performance of the FIS.Comment: 23 pages, 10 figures, and 2 tables. Accepted for publication in the AKARI special issue of the Publications of the Astronomical Society of Japa

    Biodistribution And Immunogenicity Of Allogeneic Mesenchymal Stem Cells In A Rat Model Of Intraarticular Chondrocyte Xenotransplantation

    Get PDF
    Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions

    Conditional Metastasis of Uveal Melanoma in 8091 Patients over Half-Century (51 Years) by Age Group: Assessing the Entire Population and the Extremes of Age

    Get PDF
    PURPOSE: To evaluate cumulative incidence of metastasis at specific timepoints after treatment of uveal melanoma in a large cohort of patients and to provide comparison of conditional outcomes in the youngest and oldest cohorts (extremes of age). METHODS: Retrospective analysis of 8091 consecutive patients with uveal melanoma at a single center over a 51-year period. The patients were categorized by age at presentation (0-29 years [n = 348, 4%], 30-59 years [n = 3859, 48%], 60-79 years [n = 3425, 42%], 80 to 99 years [n = 459, 6%]) and evaluated for nonconditional (from presentation date) and conditional (from specific timepoints after presentation) cumulative incidence of metastasis at five, 10, 20, and 30 years. RESULTS: For the entire population of 8091 patients, five-year/10-year/20-year/30-year nonconditional cumulative incidence of metastasis was 15%/23%/32%/36%, and the conditional incidence improved to 6%/15%/25%/30% for patients who did not develop metastasis in the first three years. For the extremes of age (0-29 years and 80-99 years), the nonconditional cumulative incidence of metastasis revealed the younger cohort with superior outcomes at 8%/15%/19%/27% and 21%/29%/29%/29%, respectively (P \u3c 0.001). The conditional incidence (at one-year and two-year timepoints with metastasis-free survival) showed persistent superior younger cohort survival (P \u3c 0.001, P = 0.001), but no further benefit for patients with three-year metastasis-free survival at 4%/12%/16%/24% and 7%/18%/18%/18%, respectively (P = 0.09). CONCLUSIONS: Non-conditional metastasis-free survival analysis for patients with uveal melanoma revealed the youngest cohort to have significantly better survival than the oldest cohort, and this persisted into one-year and two-year conditional metastasis-free survival but diminished at the three-year conditional timepoint

    A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    Get PDF
    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research

    Next Generation Nuclear Plant Methods Technical Program Plan

    Get PDF
    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR

    Sunyaev-Zel'dovich power spectrum with decaying cold dark matter

    Full text link
    Recent studies of structures of galaxies and clusters imply that dark matter might be unstable and decay with lifetime Γ1\Gamma^{-1} about the age of universe. We study the effects of the decay of cold dark matter on the Sunyaev-Zel'dovich (SZ) power spectrum. We analytically calculate the SZ power spectrum taking finite lifetime of cold dark matter into account. We find the finite lifetime of dark matter decreases the power at large scale (l<4000l < 4000) and increases at small scale (l>4000l > 4000). This is in marked contrast with the dependence of other cosmological parameters such as the amplitude of mass fluctuations σ8\sigma_{8} and the cosmological constant Ωλ\Omega_{\lambda} (under the assumption of a flat universe) which mainly change the normalization of the angular power spectrum. This difference allows one to determine the lifetime and other cosmological parameters rather separately. We also investigate sensitivity of a future SZ survey to the cosmological parameters including the life time, assuming a fiducial model Γ1=10h1Gyr\Gamma^{-1} = 10 h^{-1} {\rm Gyr}, σ8=1.0\sigma_{8} = 1.0, and Ωλ=0.7\Omega_{\lambda} = 0.7. We show that future SZ surveys such as ACT, AMIBA, and BOLOCAM can determine the lifetime within factor of two even if σ8\sigma_{8} and Ωλ\Omega_{\lambda} are marginalized.Comment: 7 pages, 5 figure

    Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    Get PDF
    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs associated with high-salt tolerance in plants of genera such as Salicornia, providing a good perspective of saline agriculture cultivating Salicornia as a vegetable crop.We show that halophytes do not occur on non-saline or inland sites because of a reduced growth rate at low soil salinity, but probably due to other ecological traits of glycophytic upper marsh species. These traits provide competitive advantage over lower salt marsh halophytes, such as earlier germination and increased growing season length.Some halophytic Amaranthaceae (Salicornioideae, Chenopodioideae and Suaedoideae) are not just highly salt tolerant, their growth rate is stimulated at a salinity range of 150–300 mM NaCl. Alternatively this may be described as depressed growth at low salinity.Selective pressure for such high-salt tolerance and salt stimulated growth likely occurred with prevailing arid climate and saline soil conditions. Under such conditions highly-salt tolerant succulent Salicornioideae, Chenopodioidea and Suaedoideae may have evolved about 65 Mya. In the context of evolution and diversication of land plants this origin of highly-salt tolerant succulent plants is relatively recent.Such high-salt tolerance might be characterized as constitutive in comparison with inducible (lower) salt tolerance of other dicotyledonae and monocotyledonae (Poaceae) species. Levels of salt tolerance of the latter type span a large range of low, intermediate to high-salt tolerance, but do not include salt stimulated growth. Salt tolerant traits of the latter inducible type appear to have evolved repeatedly and independently.Early highly-salt tolerant succulent Salicornioideae, Chenopodioidea and Suaedoideae were perennial and frost sensitive and occurred in warm temperate and Mediterranean regions. A shift from the perennial Sarcocornia to an annual life form has been phylogenetically dated circa 9.4–4.2 Mya and enabled evolution of annual hygrohalophytes in more northern coastal locations up to boreal and subarctic coastal sites avoiding damage of winter frost. Diversification of such hygrohalophytes was facilitated by polyploidization (e.g. occurrence of tetraploid and diploid Salicornia species), and a high degree of inbreeding allowing sympatric occurrence of Salicornia species in coastal salt marshes.High-level salt tolerance is probably a very complex polygenic trait. It is unlikely that glycophytes would accommodate the appropriate allelic variants at all the loci involved in halophyte salt tolerance. This might explain why attempts to improve crop salt tolerance through conventional breeding and selection have been unsuccessful to date.Genetic engineering provides a viable alternative, but the choice for the appropriate transgenes is hampered by a fundamental lack of knowledge of the mechanisms of salt tolerance in halophytes. The chances to identify the determinant genes through QTL analyses, or comparisons among near isogenic lines (NILS) are limited. Salt-tolerance is usually a species-wide trait in halophytes, and intra-specific divergence in salt tolerance in facultative halophytes seems to be often associated with chromosomal incompatibility.A variety of candidate salt tolerance genes been identified in Arabidopsis thaliana, among which genes encoding Na+ and K+ transporters, and genes involved in the general stress or anti-oxidant response, or in compatible solute metabolism. Many of these genes have been over-expressed in different glycophytic hosts, which usually appeared to alleviate, to some degree, the response to high salinity levels. However, with few exceptions, there are no indications that the same genes would be responsible for the superior salt tolerance in (eu)halophytes. Comparisons of gene expression and gene promoter activity patterns between halophytes and glycophytes are, with few exceptions, virtually lacking, which is a major omission in current day salt tolerance research.Full-genome transcriptomic comparisons between halophytes and related glycophytes through deep sequencing seem to be the most promising strategy to identify candidate genetic determinants of the difference in salt tolerance between halophytes and glycophytes.The most reliable validation of any candidate gene is through silencing the gene in the halophytic genetic background, preferably down to the level at which it is expressed in the glycophyte reference species. This requires genetically accessible halophyte models, which are not available to date, with the exception of Thellungiella halophila. However, more models are required, particularly because T. halophila is not a typical halophyte. Eventually, the pyramiding of validated salt tolerance genes under suitable promoters may be expected to be a viable strategy for crop salt tolerance improvement

    Improved Models for Cosmic Infrared Background Anisotropies: New Constraints on the IR Galaxy Population

    Full text link
    The power spectrum of cosmic infrared background (CIB) anisotropies is sensitive to the connection between star formation and dark matter halos over the entire cosmic star formation history. Here we develop a model that associates star-forming galaxies with dark matter halos and their subhalos. The model is based on a parameterized relation between the dust-processed infrared luminosity and (sub)halo mass. By adjusting 3 free parameters, we attempt to simultaneously fit the 4 frequency bands of the Planck measurement of the CIB anisotropy power spectrum. To fit the data, we find that the star-formation efficiency must peak on a halo mass scale of ~ 5x10^12 solar mass and the infrared luminosity per unit mass must increase rapidly with redshift. By comparing our predictions with a well-calibrated phenomenological model for shot noise, and with a direct observation of source counts, we show that the mean duty cycle of the underlying infrared sources must be near unity, indicating that the CIB is dominated by long-lived quiescent star formation, rather than intermittent short "star bursts". Despite the improved flexibility of our model, the best simultaneous fit to all four Planck channels remains relatively poor. We discuss possible further extensions to alleviate the remaining tension with the data. Our model presents a theoretical framework for a future joint analysis of both background anisotropy and source count measurements.Comment: 14 pages, 2 tables, 7 figures, submitted to MNRA
    corecore