7 research outputs found

    Metabolic control during the neonatal period in phenylketonuria:associations with childhood IQ

    Get PDF
    Background In phenylketonuria, treatment and subsequent lowering of phenylalanine levels usually occur within the first month of life. This study investigated whether different indicators of metabolic control during the neonatal period were associated with IQ during late childhood/early adolescence. Methods Overall phenylalanine concentration during the first month of life (total "area under the curve"), proportion of phenylalanine concentrations above upper target level (360 mu mol/L) and proportion below lower target level (120 mu mol/L) during this period, diagnostic phenylalanine levels, number of days until phenylalanine levels were 360 mu mol/L during the first month of life negatively correlated with IQ in late childhood/early adolescence. Separately, phenylalanine concentrations during different periods within the first month of life (0-10 days, 11-20 days, 21-30 days) were negatively correlated with later IQ as well, but correlation strengths did not differ significantly. No further significant associations were found. Conclusions In phenylketonuria, achievement of target-range phenylalanine levels during the neonatal period is important for cognition later in life, also when compared to other indicators of metabolic control. Impact In phenylketonuria, it remains unclear during which age periods or developmental stages metabolic control is most important for later cognitive outcomes. Phenylalanine levels during the neonatal period were clearly and negatively related to later IQ, whereas no significant associations were observed for other indices of metabolic control. This emphasizes the relative importance of this period for cognitive development in phenylketonuria. No further distinctions were observed in strength of associations with later IQ between different indicators of metabolic control during the neonatal period. Thus, achievement of good metabolic control within 1 month after birth appears "safe" with respect to later cognitive outcomes

    Effect of a Sodium and Calcium DL- β

    No full text
    Background. Ketone body therapy and supplementation are of high interest for several medical and nutritional fields. The intake of ketone bodies is often discussed in relation to rare metabolic diseases, such as multiple acyl-CoA dehydrogenase deficiency (MADD), that have no alternatives for treatment. Case reports showed positive results of therapy using ketone bodies. The number of ketone body salts offered on the wellness market is increasing steadily. More information on the kinetics of intake, safety, and tolerance of these products is needed. Methods. In a one-dose kinetic study, six healthy subjects received an intervention (0.5 g/kg bw) using a commercially available ketone body supplement. The supplement contained a mixture of sodium and calcium D-/L-β-hydroxybutyrate (βHB) as well as food additives. The blood samples drawn in the study were tested for concentrations of D-βHB, glucose, and electrolytes, and blood gas analyses were done. Data on sensory evaluation and observed side effects of the supplement were collected. The product also went through chemical food analysis. Results. The supplement led to a significant increase of D-βHB concentration in blood 2.5 and 3 h after oral intake (p=0.033;  p=0.043). The first significant effect was measured after 2 h with a mean value of 0.598 ± 0.300 mmol/L at the peak, which was recorded at 2.5 h. Changes in serum electrolytes and BGA were largely unremarkable. Taking the supplement was not without side effects. One subject dropped out due to gastrointestinal symptoms and two others reported similar but milder problems. Conclusions. Intake of a combination of calcium and sodium D-/L-βHB salt shows a slow resorption with a moderate increase of D-βHB in serum levels. An influence of βHB salts on acid-base balance could not be excluded by this one-dose study. Excessive regular consumption without medical observation is not free of adverse effects. The tested product can therefore not be recommended unconditionally

    3-Hydroxyisobutyrate Dehydrogenase (HIBADH) deficiency - a novel disorder of valine metabolism

    Get PDF
    3-Hydroxyisobutyric acid (3HiB) is an intermediate in the degradation of the branched-chain amino acid valine. Disorders in valine degradation can lead to 3HiB accumulation and its excretion in the urine. This article describes the first two patients with a new metabolic disorder, 3-hydroxyisobutyrate dehydrogenase (HIBADH) deficiency, its phenotype and its treatment with a low-valine diet. The detected mutation in the HIBADH gene leads to nonsense-mediated mRNA decay of the mutant allele and to a complete loss-of-function of the enzyme. Under strict adherence to a low-valine diet a rapid decrease of 3HiB excretion in the urine was observed. Due to limited patient numbers and intrafamilial differences in phenotype with one affected and one unaffected individual, the clinical phenotype of HIBADH deficiency needs further evaluation

    Effect of dietary regime on metabolic control in phenylketonuria: Is exact calculation of phenylalanine intake really necessary?

    No full text
    Background: A phenylalanine (Phe) restricted dietary management is required in phenylketonuria (PKU) to maintain good metabolic control. Nevertheless, five different models of dietary regimes, which differ in their accuracy of Phe documentation, are used. To investigate the effect of the dietary regime on metabolic control, a multicenter evaluation was performed. Patients/Methods: 149 patients (max. 800 mg Phe-intake/day; 108 children aged 1–9 years and 41 adolescents aged 10–15 years) could be included. They were separated according to age and dietary regime, revealed by a questionnaire on dietary habits. Dietary regimes vary from daily strict calculation of all Phe-intake (group 1) to a rather loose regime only estimating Phe-intake and including high protein food (group 5). Data were analyzed with respect to metabolic control (Phe-concentrations, Phe-concentrations above upper recommended limit during 6 months before the interview), Phe-intake (mg/day) and age (years). Results: Median Phe-concentrations in children did not differ significantly among diet groups (group 1: 161; 2: 229, 3: 236, 4: 249, 5: 288 μmol/l, p = 0.175). However, exact daily Phe calculation led to significantly lower percentage of Phe concentrations above the upper recommended limit (group 1: 17, 2: 50, 3: 42, 4: 50, 5: 75%, p = 0.035). All included patients showed good to acceptable metabolic control. Patients on the dietary regime with the least accuracy, consuming also high protein foods, showed the poorest metabolic control. Median Phe concentrations of all other groups remained within recommended ranges, including from groups not calculating special low protein foods, fruit and vegetables and using a simplified system of recording Phe-intake. In adolescents no significant differences among diet groups were revealed. Conclusion: Exact calculation of Phe content of all food is not necessary to achieve good metabolic control in children and adolescents with PKU. Excluding special low protein food, as well as fruit and vegetables from calculation of Phe-intake has no impact on metabolic control. However including protein rich food into the diet and simply estimating all Phe-intake appears insufficient. The simplification of dietary regime may be helpful in enhancing acceptability and feasibility

    Preventing maternal phenylketonuria (PKU) syndrome: important factors to achieve good metabolic control throughout pregnancy

    Get PDF
    Background!#!Insufficient metabolic control during pregnancy of mothers with phenylketonuria (PKU) leads to maternal PKU syndrome, a severe embryo-/fetopathy. Since maintaining or reintroducing the strict phenylalanine (Phe) limited diet in adults with PKU is challenging, we evaluated the most important dietary and psychosocial factors to gain and sustain good metabolic control in phenylketonuric women throughout pregnancy by a questionnaire survey with 38 questions concerning therapy feasibility. Among them, the key questions covered 5 essential items of PKU care as follows: General information about maternal PKU, PKU training, diet implementation, individual metabolic care, personal support. In addition, all participating PKU mothers were asked to estimate the quality of their personal metabolic control of the concluded pregnancies. 54 PKU mothers with 81 pregnancies were approached at 12 metabolic centers in Germany and Austria were included. According to metabolic control, pregnancies of PKU women were divided in two groups: group 'ideal' (not more than 5% of all blood Phe concentrations during pregnancy > 360 µmol/l; n = 23) and group 'suboptimal' (all others; n = 51).!##!Results!#!The demand for support was equally distributed among groups, concerning both amount and content. Personal support by the direct social environment (partner, family and friends) ('suboptimal' 71% vs 'ideal' 78%) as well as individual metabolic care by the specialized metabolic center (both groups around 60%) were rated as most important factors. The groups differed significantly with respect to the estimation of the quality of their metabolic situation (p < 0.001). Group 'ideal' presented a 100% realistic self-assessment. In contrast, group 'suboptimal' overestimated their metabolic control in 53% of the pregnancies. Offspring of group 'suboptimal' showed clinical signs of maternal PKU-syndrome in 27%.!##!Conclusion!#!The development of training programs by specialized metabolic centers for females with PKU in child bearing age is crucial, especially since those mothers at risk of giving birth to a child with maternal PKU syndrome are not aware of their suboptimal metabolic control. Such programs should provide specific awareness training for the own metabolic situation and should include partners and families

    Dietary practices in methylmalonic acidaemia: a European survey.

    Get PDF
    Background The dietary management of methylmalonic acidaemia (MMA) is a low-protein diet providing sufficient energy to avoid catabolism and to limit production of methylmalonic acid. The goal is to achieve normal growth, good nutritional status and the maintenance of metabolic stability. Aim To describe the dietary management of patients with MMA across Europe. Methods A cross-sectional questionnaire was sent to European colleagues managing inherited metabolic disorders (IMDs) (n=53) with 27 questions about the nutritional management of organic acidaemias. Data were analysed by different age ranges (0-6 months; 7-12 months; 1-10 years; 11-16 years; >16 years). Results Questionnaires were returned from 53 centres. Twenty-five centres cared for 80 patients with MMA vitamin B12 responsive (MMAB12r) and 43 centres managed 215 patients with MMA vitamin B12 non-responsive (MMAB12nr). For MMAB12r patients, 44% of centres (n=11/25) prescribed natural protein below the World Health Organization/Food and Agriculture Organization/United Nations University (WHO/FAO/UNU) 2007 safe levels of protein intake in at least one age range. Precursor-free amino acids (PFAA) were prescribed by 40% of centres (10/25) caring for 36% (29/80) of all the patients. For MMAB12nr patients, 72% of centres (n=31/43) prescribed natural protein below the safe levels of protein intake (WHO/FAO/UNU 2007) in at least one age range. PFAA were prescribed by 77% of centres (n=33/43) managing 81% (n=174/215) of patients. In MMAB12nr patients, 90 (42%) required tube feeding: 25 via a nasogastric tube and 65 via a gastrostomy. Conclusions A high percentage of centres used PFAA in MMA patients together with a protein prescription that provided less than the safe levels of natural protein intake. However, there was inconsistent practices across Europe. Long-term efficacy studies are needed to study patient outcome when using PFAA with different severities of natural protein restrictions in patients with MMA to guide future practice
    corecore