552 research outputs found
SUSTAINABLE DEVELOPMENT AND THE PROCESS OF JUSTIFYING CHOICES IN A CONTROVERSIAL UNIVERSE
All in all, neither the path of the generic principle nor that of the reduction to existing principles would appear to be fully satisfactory as the basis for establishing the legitimacy of sustainable development or as a way of making sustainability a principle of legitimacy by its own. We should probably resign ourselves to seeing in this idea a composite construction, still striving towards the formation of a new "superior common principle", without this principle yet being able to be completely clarified and validated. What we have here is an example of the sort of "compromise" described by Boltanski and Thévenot (1991, p.338): "In the compromise, the participants abandon the idea of clarifying the principle of their agreement but endeavour to maintain a frame of mind aiming at the common good." If we want to consolidate the compromise developing around sustainability, it would be well advised to seek the support of tests using well-formed objects. To this end, steps should be taken to move the emphasis away from long-term and unknowable sustainability requirements and closer to secondbest criteria focused on the transitional developments and possible risks of intentional human action, the ways of managing the linking of the different temporalities in play -- as regards the biophysical phenomena, their understanding and the main worlds of legitimacy (Godard, 1992) -- and the introduction of deliberation within the present generations as to what they feel best describes their identity, those things they would like to pass on
Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA
We report the first detection of interstellar mercapto radicals, obtained
along the sight-line to the submillimeter continuum source W49N. We have used
the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 -
3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant
spectrum reveals SH absorption in material local to W49N, as well as in
foreground gas, unassociated with W49N, that is located along the sight-line.
For the foreground material at velocities in the range 37 - 44 km/s with
respect to the local standard of rest, we infer a total SH column density ~ 2.6
E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and
yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio
is much smaller than that predicted by standard models for the production of SH
and H2S in turbulent dissipation regions and shocks, and suggests that the
endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along
with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse
molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT
special issue
OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He
The rate constants required to model the OH observations in different
regions of the interstellar medium have been determined using state of the art
quantum methods.
First, state-to-state rate constants for the H+ O()
H + OH reaction have been obtained using
a quantum wave packet method. The calculations have been compared with
time-independent results to asses the accuracy of reaction probabilities at
collision energies of about 1 meV. The good agreement between the simulations
and the existing experimental cross sections in the 1 eV energy range
shows the quality of the results.
The calculated state-to-state rate constants have been fitted to an
analytical form. Second, the Einstein coefficients of OH have been obtained
for all astronomically significant ro-vibrational bands involving the
and/or electronic states.
For this purpose the potential energy curves and electric dipole transition
moments for seven electronic states of OH are calculated with {\it ab
initio} methods at the highest level and including spin-orbit terms, and the
rovibrational levels have been calculated including the empirical spin-rotation
and spin-spin terms. Third, the state-to-state rate constants for inelastic
collisions between He and OH have been calculated using a
time-independent close coupling method on a new potential energy surface. All
these rates have been implemented in detailed chemical and radiative transfer
models. Applications of these models to various astronomical sources show that
inelastic collisions dominate the excitation of the rotational levels of
OH. In the models considered the excitation resulting from the chemical
formation of OH increases the line fluxes by about 10 % or less depending
on the density of the gas
Strong CH+ J=1-0 emission and absorption in DR21
We report the first detection of the ground-state rotational transition of
the methylidyne cation CH+ towards the massive star-forming region DR21 with
the HIFI instrument onboard the Herschel satellite. The line profile exhibits a
broad emission line, in addition to two deep and broad absorption features
associated with the DR21 molecular ridge and foreground gas. These observations
allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good
agreement with a recent experimental determination. We estimate the CH+ column
density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in
the components responsible for the absorption, which is indicative of a high
line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+
column densities agree well with the predictions of state-of-the-art C-shock
models in dense UV-illuminated gas for the emission line, and with those of
turbulent dissipation models in diffuse gas for the absorption lines.Comment: Accepted for publication in A&
Reading Videogames as (authorless) Literature
This article presents the outcomes of research, funded by the Arts and Humanities Research Council in England and informed by work in the fields of new literacy research, gaming studies and the socio-cultural framing of education, for which the videogame L.A. Noire (Rockstar Games, 2011) was studied within the orthodox framing of the English Literature curriculum at A Level (pre-University) and Undergraduate (degree level). There is a plethora of published research into the kinds of literacy practices evident in videogame play, virtual world engagement and related forms of digital reading and writing (Gee, 2003; Juul, 2005; Merchant, Gillen, Marsh and Davies, 2012; Apperley and Walsh, 2012; Bazalgette and Buckingham, 2012) as well as the implications of such for home / school learning (Dowdall, 2006; Jenkins, 2006; Potter, 2012) and for teachers’ own digital lives (Graham, 2012). Such studies have tended to focus on younger children and this research is also distinct from such work in the field in its exploration of the potential for certain kinds of videogame to be understood as 'digital transformations' of conventional ‘schooled’ literature. The outcomes of this project raise implications of such a conception for a further implementation of a ‘reframed’ literacy (Marsh, 2007) within the contemporary curriculum of a traditional and conservative ‘subject’. A mixed methods approach was adopted. Firstly, students contributing to a gamplay blog requiring them to discuss their in-game experience through the ‘language game’ of English Literature, culminating in answering a question constructed with the idioms of the subject’s set text ‘final examination’. Secondly, students taught their teachers to play L.A. Noire, with free choice over the context for this collaboration. Thirdly, participants returned to traditional roles in order to work through a set of study materials provided, designed to reproduce the conventions of the ‘study guide’ for literature education. Interviews were conducted after each phase and the outcomes informed a redrafting of the study materials which are now available online for teachers – this being the ‘practical’ outcome of the research (Berger and McDougall, 2012). In the act of inserting the study of L.A. Noire into the English Literature curriculum as currently framed, this research moves, through a practical ‘implementation’ beyond longstanding debates around narratology and ludology (Frasca, 2003; Juul, 2005) in the field of game studies (Leaning, 2012) through a direct connection to new literacy studies and raises epistemological questions about ‘subject identity’, informed by Bernstein (1996) and Bourdieu (1986) and the implications for digital transformations of texts for both ideas about cultural value in schooled literacy (Kendall and McDougall, 2011) and the politics of ‘expertise’ in pedagogic relations (Ranciere, 2009, Bennett, Kendall and McDougall, 2012a)
On the Relationship Between Molecular Hydrogen and Carbon Monoxide Abundances in Molecular Clouds
The most usual tracer of molecular gas is line emission from CO. However, the
reliability of that tracer has long been questioned in environments different
from the Milky Way. We study the relationship between H2 and CO abundances
using a fully dynamical model of magnetized turbulence coupled to a chemical
network simplified to follow only the dominant pathways for H2 and CO formation
and destruction, and including photodissociation using a six-ray approximation.
We find that the abundance of H2 is primarily determined by the amount of time
available for its formation, which is proportional to the product of the
density and the metallicity, but insensitive to photodissociation.
Photodissociation only becomes important at extinctions under a few tenths of a
visual magnitude, in agreement with both observational and prior theoretical
work. On the other hand, CO forms quickly, within a dynamical time, but its
abundance depends primarily on photodissociation, with only a weak secondary
dependence on H2 abundance. As a result, there is a sharp cutoff in CO
abundance at mean visual extinctions A_V < 3. At lower values of A_V we find
that the ratio of H2 column density to CO emissivity X_CO is proportional to
A_V^(-3.5). This explains the discrepancy observed in low metallicity systems
between cloud masses derived from CO observations and other techniques such as
infrared emission. Our work predicts that CO-bright clouds in low metallicity
systems should be systematically larger or denser than Milky Way clouds, or
both. Our results further explain the narrow range of observed molecular cloud
column densities as a threshold effect, without requiring the assumption of
virial equilibrium.Comment: 16 pages, 11 figures. Updated to match version accepted by MNRA
Nitrogen hydrides in interstellar gas II. Analysis of Herschel/HIFI observations towards W49N and G10.6-0.4 (W31C)
We have used the Herschel-HIFI instrument to observe interstellar nitrogen
hydrides along the sight-lines towards W49N and G10.6-0.4 in order to elucidate
the production pathways leading to nitrogen-bearing species in diffuse gas. All
detections show absorption by foreground material over a wide range of
velocities, as well as absorption associated directly with the hot-core source
itself. As in the previously published observations towards G10.6-0.4, the NH,
NH2 and NH3 spectra towards W49N show strikingly similar and non-saturated
absorption features. We decompose the absorption of the foreground material
towards W49N into different velocity components in order to investigate whether
the relative abundances vary among the velocity components, and, in addition,
we re-analyse the absorption lines towards G10.6-0.4 in the same manner.
Abundances, with respect to molecular hydrogen, in each velocity component are
estimated using CH. The analysis points to a co-existence of the nitrogen
hydrides in diffuse or translucent interstellar gas with a high molecular
fraction. Towards both sources, we find that NH is always at least as abundant
as both o-NH2 and o-NH3, in sharp contrast to previous results for dark clouds.
We find relatively constant N(NH)/N(o-NH3) and N(o-NH2)/N(o-NH3) ratios with
mean values of 3.2 and 1.9 towards W49N, and 5.4 and 2.2 towards G10.6-0.4,
respectively. The mean abundance of o-NH3 is ~2x10^-9 towards both sources. The
nitrogen hydrides also show linear correlations with CN and HNC towards both
sources, and looser correlations with CH. The upper limits on the NH+ abundance
indicate column densities < 2 - 14 % of N(NH). Surprisingly low values of the
ammonia ortho-to-para ratio are found in both sources, ~0.5 - 0.7 +- 0.1. This
result cannot be explained by current models as we had expected to find a value
of unity or higher.Comment: 35 pages, 74 figure
Risks, alternative knowledge strategies and democratic legitimacy: the conflict over co-incineration of hazardous industrial waste in Portugal.
The decision to incinerate hazardous industrial waste in cement plants (the socalled
‘co-incineration’ process) gave rise to one of the most heated environmental
conflicts ever to take place in Portugal. The bitterest period was between 1997 and
2002, after the government had made a decision. Strong protests by residents,
environmental organizations, opposition parties, and some members of the
scientific community forced the government to backtrack and to seek scientific
legitimacy for the process through scientific expertise. The experts ratified the
government’s decision, stating that the risks involved were socially acceptable.
The conflict persisted over a decade and ended up clearing the way for a more
sustainable method over which there was broad social consensus – a multifunctional
method which makes it possible to treat, recover and regenerate most
wastes. Focusing the analysis on this conflict, this paper has three aims: (1) to
discuss the implications of the fact that expertise was ‘confiscated’ after the
government had committed itself to the decision to implement co-incineration and
by way of a reaction to the atmosphere of tension and protest; (2) to analyse the
uses of the notions of ‘risk’ and ‘uncertainty’ in scientific reports from both
experts and counter-experts’ committees, and their different assumptions about
controllability and criteria for considering certain practices to be sufficiently safe
for the public; and (3) to show how the existence of different technical scientific
and political attitudes (one more closely tied to government and the corporate
interests of the cement plants, the other closer to the environmental values of reuse
and recycling and respect for the risk perception of residents who challenged
the facilities) is closely bound up with problems of democratic legitimacy. This
conflict showed how adopting more sustainable and lower-risk policies implies a
broader view of democratic legitimacy, one which involves both civic movements
and citizens themselves
Charge-Density-Waves Tuned by Crystal Symmetry
The electronic orders appearing in condensed matter systems are originating
from the precise arrangement of atoms constituting the crystal as well as their
nature. This teneous relationship can lead to highly different phases in
condensed matter, and drive electronic phase transitions. Here, we show that a
very slight deformation of the crystal structure of TbTe can have a
dramatic influence on the electronic order that is stabilized. In particular,
we show that the Charge Density Wave (CDW) developping along the axis
in the pristine state, switches to an orientation along when the
naturally orthorhombic system is turned into a tetragonal system. This is
achieved by performing true biaxial mechanical deformation of a TbTe sample
from 250K to 375K, and by measuring both structural and electronic parameters
with x-ray diffraction and transport measurements. We show that this switching
transition is driven by the tetragonality parameter , and that the
transition occurs for , with a coexistence region for . The CDW transition temperature is found to have a linear
dependence with , with no saturation in the deformed states investigated
here, while the gap saturates out of the coexistence region. The linear
dependence of is accounted for within a tight-binding model. Our results
question the relationship between the gap and in RTe systems. More
generally, our method of applying true biaxial deformation at cryogenic
temperatures can be applied to many systems displaying electronic phase
transitions, and opens a new route towards the study of coexisting or competing
electronic orders in condensed matter
- …