136 research outputs found

    Probing MHD Shocks with high-J CO observations: W28F

    Full text link
    Context. Observing supernova remnants (SNRs) and modelling the shocks they are associated with is the best way to quantify the energy SNRs re-distribute back into the Interstellar Medium (ISM). Aims. We present comparisons of shock models with CO observations in the F knot of the W28 supernova remnant. These comparisons constitute a valuable tool to constrain both the shock characteristics and pre-shock conditions. Methods. New CO observations from the shocked regions with the APEX and SOFIA telescopes are presented and combined. The integrated intensities are compared to the outputs of a grid of models, which were combined from an MHD shock code that calculates the dynamical and chemical structure of these regions, and a radiative transfer module based on the 'large velocity gradient' (LVG) approximation. Results. We base our modelling method on the higher J CO transitions, which unambiguously trace the passage of a shock wave. We provide fits for the blue- and red-lobe components of the observed shocks. We find that only stationary, C-type shock models can reproduce the observed levels of CO emission. Our best models are found for a pre-shock density of 104 cm-3, with the magnetic field strength varying between 45 and 100 {\mu}G, and a higher shock velocity for the so-called blue shock (\sim25 km s-1) than for the red one (\sim20 km s-1). Our models also satisfactorily account for the pure rotational H2 emission that is observed with Spitzer.Comment: 8 pages, 6 figures, 1 table, accepted for A&A SOFIA/GREAT Special Issu

    High-resolution wide-band Fast Fourier Transform spectrometers

    Full text link
    We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 seconds. An enhancement of the present 2.5 GHz XFFTS will duplicate the number of spectral channels (64k), offering spectroscopy with even better resolution during Cycle 1 observations.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    GREAT [CII] and CO observations of the BD+40{\deg}4124 region

    Full text link
    The BD+40\degree4124 region was observed with high angular and spectral resolution with the German heterodyne instrument GREAT in CO J = 13 \rightarrow 12 and [CII] on SOFIA. These observations show that the [CII] emission is very strong in the reflection nebula surrounding the young Herbig Ae/Be star BD+40\degree4124. A strip map over the nebula shows that the [CII] emission approximately coincides with the optical nebulosity. The strongest [CII] emission is centered on the B2 star and a deep spectrum shows that it has faint wings, which suggests that the ionized gas is expanding. We also see faint CO J = 13 \rightarrow 12 at the position of BD+40\degree4124, which suggests that the star may still be surrounded by an accretion disk.We also detected [CII] emission and strong CO J = 13 \rightarrow 12 toward V1318 Cyg. Here the [CII] emission is fainter than in BD+40\degree4124 and appears to come from the outflow, since it shows red and blue wings with very little emission at the systemic velocity, where the CO emission is quite strong. It therefore appears that in the broad ISO beam the [CII] emission was dominated by the reflection nebula surrounding BD+40\degree4124, while the high J CO lines originated from the adjacent younger and more deeply embedded binary system V1318 Cyg

    Mid- and high-J CO observations towards UCHIIs

    Get PDF
    A study of 12 ultracompact HII regions was conducted to probe the physical conditions and kinematics in the inner envelopes of the molecular clumps harboring them. The APEX telescope was used to observe the sources in the CO (4-3) and 13CO (8-7) lines. Line intensities were modeled with the RATRAN radiative transfer code using power laws for the density and temperature to describe the physical structure of the clumps. All sources were detected in both lines. The optically thick CO (4-3) line shows predominantly blue skewed profiles reminiscent of infall. Line intensities can be reproduced well using the physical structure of the clumps taken from the literature. The optically thick line profiles show that CO is a sensitive tracer of ongoing infall in the outer envelopes of clumps harboring ultracompact HII regions and hot molecular cores.Comment: APEX A&A special issue, accepte

    High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    Full text link
    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2, which corresponds to a fractional abundance of 10^-7 to 10^-8, which is comparable to that of H_2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H_2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of ^18OH

    GREAT: the SOFIA high-frequency heterodyne instrument

    Full text link
    We describe the design and construction of GREAT, the German REceiver for Astronomy at Terahertz frequencies operated on the Stratospheric Observatory for Infrared Astronomy (SOFIA). GREAT is a modular dual-color heterodyne instrument for highresolution far-infrared (FIR) spectroscopy. Selected for SOFIA's Early Science demonstration, the instrument has successfully performed three Short and more than a dozen Basic Science flights since first light was recorded on its April 1, 2011 commissioning flight. We report on the in-flight performance and operation of the receiver that - in various flight configurations, with three different detector channels - observed in several science-defined frequency windows between 1.25 and 2.5 THz. The receiver optics was verified to be diffraction-limited as designed, with nominal efficiencies; receiver sensitivities are state-of-the-art, with excellent system stability. The modular design allows for the continuous integration of latest technologies; we briefly discuss additional channels under development and ongoing improvements for Cycle 1 observations. GREAT is a principal investigator instrument, developed by a consortium of four German research institutes, available to the SOFIA users on a collaborative basis

    APECS - The Atacama Pathfinder Experiment Control System

    Get PDF
    APECS is the distributed control system of the new Atacama Pathfinder EXperiment (APEX) telescope located on the Llano de Chajnantor at an altitude of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama Large Millimeter Array (ALMA) software and employs a modern, object-oriented design using the Common Object Request Broker Architecture (CORBA) as the middleware. New generic device interfaces simplify adding instruments to the control system. The Python based observer command scripting language allows using many existing software libraries and facilitates creating more complex observing modes. A new self-descriptive raw data format (Multi-Beam FITS or MBFITS) has been defined to store the multi-beam, multi-frequency data. APECS provides an online pipeline for initial calibration, observer feedback and a quick-look display. APECS is being used for regular science observations in local and remote mode since August 2005.Comment: 4 pages, A&A, accepte

    Terahertz hot electron bolometer waveguide mixers for GREAT

    Full text link
    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    The structure of hot gas in Cepheus B

    Full text link
    By observing radiation-affected gas in the Cepheus B molecular cloud we probe whether the sequential star formation in this source is triggered by the radiation from newly formed stars. We used the dual band receiver GREAT onboard SOFIA to map [C II] and CO 13--12 and 11--10 in Cep B and compared the spatial distribution and the spectral profiles with complementary ground-based data of low-JJ transitions of CO isotopes, atomic carbon, and the radio continuum. The interaction of the radiation from the neighboring OB association creates a large photon-dominated region (PDR) at the surface of the molecular cloud traced through the photoevaporation of C^+. Bright internal PDRs of hot gas are created around the embedded young stars, where we detect evidence of the compression of material and local velocity changes; however, on the global scale we find no indications that the dense molecular material is dynamically affected.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue
    corecore