2,311 research outputs found
Homeless drug users' awareness and risk perception of peer "Take Home Naloxone" use – a qualitative study
BACKGROUND
Peer use of take home naloxone has the potential to reduce drug related deaths. There appears to be a paucity of research amongst homeless drug users on the topic. This study explores the acceptability and potential risk of peer use of naloxone amongst homeless drug users. From the findings the most feasible model for future treatment provision is suggested.
METHODS
In depth face-to-face interviews conducted in one primary care centre and two voluntary organisation centres providing services to homeless drug users in a large UK cosmopolitan city. Interviews recorded, transcribed and analysed thematically by framework techniques.
RESULTS
Homeless people recognise signs of a heroin overdose and many are prepared to take responsibility to give naloxone, providing prior training and support is provided. Previous reports of the theoretical potential for abuse and malicious use may have been overplayed.
CONCLUSION
There is insufficient evidence to recommend providing "over the counter" take home naloxone" to UK homeless injecting drug users. However a programme of peer use of take home naloxone amongst homeless drug users could be feasible providing prior training is provided. Peer education within a health promotion framework will optimise success as current professionally led health promotion initiatives are failing to have a positive impact amongst homeless drug users
Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models
A computation scheme for solving elliptic boundary value problems with
axially symmetric confining potentials using different sets of one-parameter
basis functions is presented. The efficiency of the proposed symbolic-numerical
algorithms implemented in Maple is shown by examples of spheroidal quantum dot
models, for which energy spectra and eigenfunctions versus the spheroid aspect
ratio were calculated within the conventional effective mass approximation.
Critical values of the aspect ratio, at which the discrete spectrum of models
with finite-wall potentials is transformed into a continuous one in strong
dimensional quantization regime, were revealed using the exact and adiabatic
classifications.Comment: 6 figures, Submitted to Proc. of The 12th International Workshop on
Computer Algebra in Scientific Computing (CASC 2010) Tsakhkadzor, Armenia,
September 5 - 12, 201
Bivariate spline interpolation with optimal approximation order
Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181
A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole
The description of extreme-mass-ratio binary systems in the inspiral phase is
a challenging problem in gravitational wave physics with significant relevance
for the space interferometer LISA. The main difficulty lies in the evaluation
of the effects of the small body's gravitational field on itself. To that end,
an accurate computation of the perturbations produced by the small body with
respect the background geometry of the large object, a massive black hole, is
required. In this paper we present a new computational approach based on Finite
Element Methods to solve the master equations describing perturbations of
non-rotating black holes due to an orbiting point-like object. The numerical
computations are carried out in the time domain by using evolution algorithms
for wave-type equations. We show the accuracy of the method by comparing our
calculations with previous results in the literature. Finally, we discuss the
relevance of this method for achieving accurate descriptions of
extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure
Improving FEM crash simulation accuracy through local thickness estimation based on CAD data
ManuscriptIn this paper, we present a method for estimating local thickness distribution in finite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by different human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the benefits of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and cast parts and is currently being used by Ford Motor Company.FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through projects PEst-C/CTM/LA0025/2013 and PEst-OE/EEI/UI0752/201
Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience
Hierarchical organisation is a common feature of many directed networks arising in nature and technology. For example, a well-defined message-passing framework based on managerial status typically exists in a business organisation. However, in many real-world networks such patterns of hierarchy are unlikely to be quite so transparent. Due to the nature in which empirical data is collated the nodes will often be ordered so as to obscure any underlying structure. In addition, the possibility of even a small number of links violating any overall “chain of command” makes the determination of such structures extremely challenging. Here we address the issue of how to reorder a directed network in order to reveal this type of hierarchy. In doing so we also look at the task of quantifying the level of hierarchy, given a particular node ordering. We look at a variety of approaches. Using ideas from the graph Laplacian literature, we show that a relevant discrete optimization problem leads to a natural hierarchical node ranking. We also show that this ranking arises via a maximum likelihood problem associated with a new range-dependent hierarchical random graph model. This random graph insight allows us to compute a likelihood ratio that quantifies the overall tendency for a given network to be hierarchical. We also develop a generalization of this node ordering algorithm based on the combinatorics of directed walks. In passing, we note that Google’s PageRank algorithm tackles a closely related problem, and may also be motivated from a combinatoric, walk-counting viewpoint. We illustrate the performance of the resulting algorithms on synthetic network data, and on a real-world network from neuroscience where results may be validated biologically
A Toy Model for Testing Finite Element Methods to Simulate Extreme-Mass-Ratio Binary Systems
Extreme mass ratio binary systems, binaries involving stellar mass objects
orbiting massive black holes, are considered to be a primary source of
gravitational radiation to be detected by the space-based interferometer LISA.
The numerical modelling of these binary systems is extremely challenging
because the scales involved expand over several orders of magnitude. One needs
to handle large wavelength scales comparable to the size of the massive black
hole and, at the same time, to resolve the scales in the vicinity of the small
companion where radiation reaction effects play a crucial role. Adaptive finite
element methods, in which quantitative control of errors is achieved
automatically by finite element mesh adaptivity based on posteriori error
estimation, are a natural choice that has great potential for achieving the
high level of adaptivity required in these simulations. To demonstrate this, we
present the results of simulations of a toy model, consisting of a point-like
source orbiting a black hole under the action of a scalar gravitational field.Comment: 29 pages, 37 figures. RevTeX 4.0. Minor changes to match the
published versio
Mesoscopic structure conditions the emergence of cooperation on social networks
We study the evolutionary Prisoner's Dilemma on two social networks obtained
from actual relational data. We find very different cooperation levels on each
of them that can not be easily understood in terms of global statistical
properties of both networks. We claim that the result can be understood at the
mesoscopic scale, by studying the community structure of the networks. We
explain the dependence of the cooperation level on the temptation parameter in
terms of the internal structure of the communities and their interconnections.
We then test our results on community-structured, specifically designed
artificial networks, finding perfect agreement with the observations in the
real networks. Our results support the conclusion that studies of evolutionary
games on model networks and their interpretation in terms of global properties
may not be sufficient to study specific, real social systems. In addition, the
community perspective may be helpful to interpret the origin and behavior of
existing networks as well as to design structures that show resilient
cooperative behavior.Comment: Largely improved version, includes an artificial network model that
fully confirms the explanation of the results in terms of inter- and
intra-community structur
The Formation of a Disk Galaxy within a Growing Dark Halo
We present a dynamical model for the formation and evolution of a massive
disk galaxy, within a growing dark halo whose mass evolves according to
cosmological simulations of structure formation. The galactic evolution is
simulated with a new 3D chemo-dynamical code, including dark matter, stars and
a multi-phase ISM. The simulations start at redshift z=4.85 with a small dark
halo in a LCDM universe and we follow the evolution until the present epoch.
The energy release by massive stars and SNe prevents a rapid collapse of the
baryonic matter and delays the maximum star formation until z=1. The galaxy
forms radially from inside-out and vertically from halo to disk. The first
galactic component that forms is the halo, followed by the bulge, the disk-halo
transition region, and the disk. At z=1, a bar begins to form which later turns
into a triaxial bulge. There is a pronounced deficiency of low-metallicity disk
stars due to pre-enrichment of the disk ISM with metal-rich gas from the bulge
and inner disk (G-dwarf problem). The mean rotation and the distribution of
orbital eccentricities for all stars as a function of metallicity are not very
different from those observed in the solar neighbourhood, showing that
homogeneous collapse models are oversimplified. The approach presented here
provides a detailed description of the formation and evolution of an isolated
disk galaxy in a LCDM universe, yielding new information about the kinematical
and chemical history of the stars and the ISM, but also about the evolution of
the luminosity, the colours and the morphology of disk galaxies.Comment: 23 pages, LaTeX, 18 figures, A&A accepted, a high resolution version
of the paper can be found at http://www.astro.unibas.ch/leute/ms.shtm
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
- …
