77 research outputs found

    The Effect of a Single Supernova Explosion on the Cuspy Density Profile of a Small-Mass Dark Matter Halo

    Full text link
    Some observations of galaxies, and in particular dwarf galaxies, indicate a presence of cored density profiles in apparent contradiction with cusp profiles predicted by dark matter N-body simulations. We constructed an analytical model, using particle distribution functions (DFs), to show how a supernova (SN) explosion can transform a cusp density profile in a small-mass dark matter halo into a cored one. Considering the fact that a SN efficiently removes matter from the centre of the first haloes, we study the effect of mass removal through a SN perturbation in the DFs. We found that the transformation from a cusp into a cored profile is present even for changes as small as 0.5% of the total energy of the halo, that can be produced by the expulsion of matter caused by a single SN explosion.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Stellar mass map and dark matter distribution in M31

    Full text link
    Stellar mass distribution in M31 is estimated using optical and infrared imaging data. Combining the derived stellar mass model with various kinematical data, properties of the DM halo of the galaxy are constrained. SDSS observations through the ugriz filters and the Spitzer imaging at 3.6 microns are used to sample the SED of the galaxy at each imaging pixel. Intrinsic dust extinction effects are taken into account by using far-infrared observations. Synthetic SEDs created with different stellar population synthesis models are fitted to the observed SEDs, providing estimates for the stellar mass surface density. The stellar mass distribution of the galaxy is described with a 3D model consisting of a nucleus, a bulge, a disc, a young disc and a halo component, each following the Einasto density distribution (relations between different functional forms of the Einasto density distribution are given in App. B). By comparing the stellar mass distribution to the observed rotation curve and kinematics of outer globular clusters and satellite galaxies, the DM halo parameters are estimated. Stellar population synthesis models suggest that M31 is dominated by old stars throughout the galaxy. The total stellar mass is (10-15)10^10Msun, 30% of which is in the bulge and 56% in the disc. None of the tested DM distribution models can be falsified on the basis of the stellar matter distribution and the rotation curve of the galaxy. The virial mass of the DM halo is (0.8-1.1)10^12Msun and the virial radius is 189-213kpc, depending on the DM distribution. The central density of the DM halo is comparable to that of nearby dwarf galaxies, low-surface-brightness galaxies and distant massive disc galaxies, thus the evolution of central DM halo properties seems to be regulated by similar processes for a broad range of halo masses, environments, and cosmological epochs.Comment: 11 pages, 13 figures, 6 tables, accepted for publication in Astronomy and Astrophysic

    GHASP : an H alpha kinematic survey of spiral and irregular galaxies. V. Dark matter distribution in 36 nearby spiral galaxies

    Full text link
    The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry-Perot interferometry as part of the GHASP survey. The main aim of obtaining high resolution H alpha 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The H alpha velocities were combined with low resolution HI data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere and an NFW profile. For the galaxies already modeled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the center of the dark matter halos rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and LSB galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius halos have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.Comment: 21 pages, 14 figures. MNRAS (accepted october 3rd 2007

    High-resolution mass models of dwarf galaxies from LITTLE THINGS

    Get PDF
    We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 26 LITTLE THINGS dwarf galaxies is alpha =-0.32 +/- 0.24 which is in accordance with the previous results found for low surface brightness galaxies (alpha = -0.2 +/- 0.2) as well as the seven THINGS dwarf galaxies (alpha =-0.29 +/- 0.07). However, this significantly deviates from the cusp-like dark matter distribution predicted by dark-matter-only Lambda CDM simulations. Instead our results are more in line with the shallower slopes found in the Lambda CDM SPH simulations of dwarf galaxies in which the effect of baryonic feedback processes is included. In addition, we discuss the central dark matter distribution of DDO 210 whose stellar mass is relatively low in our sample to examine the scenario of inefficient supernova feedback in low mass dwarf galaxies predicted from recent Lambda SPH simulations of dwarf galaxies where central cusps still remain.Peer reviewe

    A search for faint low surface brightness galaxies in the relaxed cluster Abell 496

    Full text link
    Cluster faint low surface brightness galaxies (fLSBs) are difficult to observe. Consequently, their origin, physical properties and number density are not well known. After a first search for fLSBs in the highly substructured Coma cluster, we present here a search for fLSBs in Abell 496. This cluster appears to be much more relaxed than Coma, but is embedded in a large scale filament of galaxies. Our aim is to compare the properties of fLSBs in these two very different clusters, to search for environmental effects. Based on deep CFHT/Megacam images in the u*, g', r' and i' bands, we selected galaxies with r'>21 and surface brightness > 24 mag/arcsec-2. We estimated photometric redshifts for all these galaxies and kept the 142 fLSBs with photo-z<0.2. In a g'-i' versus i' color-magnitude diagram, we find that a large part of these fLSBs follow the red sequence (RS) of brighter galaxies. The fLSBs within +-1sigma of the RS show a homogeneous spatial distribution, while those above the RS appear to be concentrated along the large scale filament of galaxies. These properties are interpreted as agreeing with the idea that RS fLSBs are formed in groups prior to cluster assembly. The formation of red fLSBs could be related to infalling galaxies.Comment: Accepted for publication in A&

    The PN.S Elliptical Galaxy Survey: the dark matter in NGC 4494

    Get PDF
    We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 PNe out to 7 effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1 Re. The velocity dispersion profile declines with radius, though not very steeply, down to ~70 km/s at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component LCDM-motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fit solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio, and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration halos, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.Comment: 29 pages, 17 figures. MNRAS, accepte

    Habitable Zones in the Universe

    Full text link
    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and Evolution of Biospheres; table slightly revise

    Cosmology: small scale issues

    Get PDF
    The abundance of dark matter satellites and subhalos, the existence of density cusps at the centers of dark matter halos, and problems producing realistic disk galaxies in simulations are issues that have raised concerns about the viability of the standard cold dark matter (LambdaCDM) scenario for galaxy formation. This talk reviews these issues, and considers the implications for cold vs. various varieties of warm dark matter (WDM). The current evidence appears to be consistent with standard LambdaCDM, although improving data may point toward a rather tepid version of LambdaWDM - tepid since the dark matter cannot be very warm without violating observational constraints.Comment: 7 pages, 1 figure, to appear in the proceedings of the 8th UCLA Dark Matter Symposium, Marina del Rey, USA, 20-22 February 200

    Early transcriptional control of ENaC (de)ubiquitylation by aldosterone

    Full text link
    Aldosterone increases sodium reabsorption across kidney target tubules already before it increases the number of transport proteins, indicating that the early functional response to aldosterone depends on the activation of preexisting channels and pumps. A central mediator of this action is the early aldosterone-induced kinase Sgk1 that de-represses the surface expression and activity of the epithelial sodium channel (ENaC). A main mechanism by which Sgk1 exerts this de-repression is the phosphorylation of the ubiquitin ligase Nedd4-2 that is thereby prevented from ubiquitylating ENaC. Among a series of new early aldosterone-induced gene products recently identified in kidney target tubules, an additional regulator of ENaC ubiquitylation, the deubiquitylating enzyme Usp2-45, was identified. Coexpression of Usp2-45 was shown to increase ENaC surface expression and activity, and to decrease its ubiquitylation in expression systems, whereas other Usps such as the splice variant Usp2-69 had no effect. Since both Sgk1 and Usp2-45 are similarly induced in distal colon as well, in contrast to other gene products strongly induced in kidney that are not regulated in colon, we suggest that (de)ubiquitylation is the major ENaC regulatory mechanism targeted by aldosterone in the short-term via transcriptional regulation
    corecore