39 research outputs found

    Comparison of diet consumption, body composition and lipoprotein lipid values of Kuwaiti fencing players with international norms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No published data is currently available that describes the dietary patterns or physiological profiles of athletes participating on the Kuwaiti national fencing team and its potential impact on health and physical performance. The purpose of this investigation was to: 1) collect baseline data on nutrient intake 2) collect, analyze and report baseline for body composition, plasma lipid and lipoprotein concentrations during the competitive season, 3) compare the results with the international norms, 4) and provide necessary health and nutritional information in order to enhance the athletes' performance and skills.</p> <p>Methods</p> <p>Fifteen national-class fencers 21.5 ± 2.6 years of age participated in this study. Food intake was measured using a 3-day food record. Body composition was estimated using both the BOD POD and Body Mass Index (BMI). Total blood lipid profiles and maximum oxygen consumption was measured for each of the subjects during the competitive season.</p> <p>Results</p> <p>The results of the present study showed significant differences in dietary consumption in comparison with the recommended dietary allowances (RDA). The blood lipids profile and body composition (BMI and % body fat) were in normal range in comparison with international norms However, the average VO<sub>2 max </sub>value was less than the value of the other fencers.</p> <p>Conclusion</p> <p>Due to the results of the research study, a dietary regimen can be designed that would better enhance athletic performance and minimize any health risks associated with nutrition. Percent body fat and BMI will also be categorized for all players. In addition, the plasma blood tests will help to determine if any of the players have an excessive level of lipids or any blood abnormalities. The outcomes of present study will have a direct impact on the players health and therefore their skills and athletic performance.</p

    Trace elements in hemodialysis patients: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.</p> <p>Methods</p> <p>All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.</p> <p>Results</p> <p>We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.</p> <p>Conclusion</p> <p>Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.</p

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    The effect of physical exercise and caloric restriction on the components of metabolic syndrome

    Full text link

    Inorganic Mass Spectrometry

    Get PDF
    To establish a method for sensitive, accurate, and precise determination of Se in real samples, isotope dilution analysis using high-power nitrogen microwave-induced plasma mass spectrometry (N 2 MIP-IDMS) was conducted. In this study, freeze-dried human blood serum (Standard Reference Material, NIES No. 4) provided by NIES (National Institute for Environmental Studies) was used as a real sample. The measured isotopes of Se were 78 Se and 80 Se which are the major isotopes of Se. The appropriate amount of a Se spike solution was theoretically calculated by using an error multiplication factor (F) and was confirmed experimentally for the isotope dilution analysis. The mass discrimination effect was corrected for by using a standard Se solution for the measurement of Se isotope ratios in the spiked sample. However, the sensitivity for the detection of Se was not so good and the precision of the determination was not improved (2-3%) by N 2 MIP-IDMS with use of the conventional nebulizer. Therefore, a hydride generation system was connected to N 2 MIP-IDMS as a sample introduction system (HG-N 2 MIP-IDMS) in order to establish a more sensitive detection and a more precise determination of Se. A detection limit (3σ) of 10 pg mL -1 could be achieved, and the RSD was less than 1% at the concentration level of 5.0-10.0 ng mL -1 by HG-N 2 MIP-IDMS. The analytical results were found to be in a good agreement with those obtained by the standard addition method using conventional Ar ICPMS. It is well-known that Se is an essential element for all mammals. Se deficiency leads to deficiency syndromes, for example, Keshan disease, which is known for cardiac insufficiency that occurred in children and pregnant women in China. Problems also occur if the concentration of Se is too high; for example, gastroenteric disorders, dermatitis, and neurotic disorders are caused by excessive intake of Se. Moreover, it is well-known that the range of permissive intake amounts of Se is very narrow for human beings. Therefore, it is restricted as a toxic element in environmental standards. There are several sources of environmental Se pollution: the processes of Se refinement and the production processes of Se-containing products. For these reasons, the accurate and precise determination of trace levels of Se in environmental and biological samples is required, and studies of Se determination have been reported by several groups. [1][2][3][4][5][6][7][8][9][10][11] Because Ar ICPMS can measure multiple elements at a concentration range from ng mL -1 to fg mL -1 , it has widespread use in the determination of trace elements in various samples. 12-25 However

    Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number

    Get PDF
    Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens

    An integrated national scale SARS-CoV-2 genomic surveillance network

    Get PDF

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluation of various mineralization methods and measurement techniques for trace element analysis of plant materials

    No full text
    Three decomposition methods (pressurised microwave digestion, classical dry ashing and dry ashing in a mixture of oxidising gases) for predominantly plant samples, and three measurement techniques (ICP-MS, FAAS, ETAAS) for the determination of Cd, Cu, Pb and Zn were compared. As confirmed by the statistical evaluation, no significant differences between analytical methods were found
    corecore