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Abstract

Biological systems are subject to inherent stochasticity. Nevertheless, development is

remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell

numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variabil-

ity, what their relationship is to core components of developmental gene networks, and what

is the developmental basis of variable phenotypes. Here, we start addressing these ques-

tions using the robust number of Caenorhabditis elegans epidermal stem cells, known as

seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule

imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) tran-

scription factor, increase seam cell number variability. We show that the increase in pheno-

typic variability is due to stochastic conversion of normally symmetric cell divisions to

asymmetric and vice versa during development, which affect the terminal seam cell number

in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network

to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell vari-

ability in Wnt pathway activation, which correlates with and may drive phenotypic variability.

Our study demonstrates the feasibility to study phenotypic trait variance in tractable model

organisms using unbiased mutagenesis screens.

Author summary

Organisms are exposed to both internal and external perturbations in every molecular

process they go through, and robustness—the ability to maintain their systems unchanged

—is crucial for their development and survival. However, the processes that keep the vari-

ability of cells as low as possible are barely known. The nematode C. elegans is notable for
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its highly reproducible development, showing an almost invariant pattern of cell division

and differentiation during development; it is thus an ideal model organism in which to

search for genes that regulate phenotypic consistency among genetically identical individ-

uals. We focus on a group of lateral epidermal cells—the seam cells—which undergo stem

cell-like divisions during postembryonic development. These divisions can either be sym-

metric towards the seam cell fate, acting to increase the total number of cells, or asymmet-

ric, giving rise to one daughter cell that differentiates into its final fate and another one

that serves to keep the number of seam cells constant. We show here that mutations in the

transcription factor lin-22 increase seam cell number variability due to stochastic conver-

sion of symmetric divisions into asymmetric ones and vice versa during development,

thereby altering the number of terminal seam cell number in opposing directions. We

also show that the observed phenotypic variability correlates with the stochastic activation

of the conserved Wnt signaling pathway. Our work suggests that core components of

developmental gene networks modulate phenotypic variability in multicellular animals.

Introduction

It is remarkable how biological systems manage to operate consistently despite facing several

types of variation, including the intrinsic stochasticity in every molecular process. This ability of

a given system to produce an invariable output in the presence of internal and external perturba-

tions is called robustness [1, 2]. Developmental processes need to be robust to perturbations to

achieve balanced growth and morphogenesis. This includes stem cell number regulation, which

protects an organism from tissue hyperplasia, while at the same time facilitates tissue mainte-

nance and repair. Recent advances in gene expression and protein quantification with single-cell

resolution have suggested a substantial amount of cell-to-cell molecular heterogeneity in biologi-

cal systems [3], raising the question of how robustness is achieved at the phenotypic level.

Since Waddington, who first discussed developmental variability [4], there is a growing

interest in understanding phenotypic buffering using both theoretical and experimental

approaches [5]. To this end, a key goal is to discover which genes influence phenotypic vari-

ance (Box 1). Although it has previously been shown that disruption of single genes can lead to

phenotypic variability, most experimental studies have been targeted to unicellular organisms

or tested specific candidates, usually heat-shock proteins [6–9]. For example, the chaperone

HSP90 is often thought to play a major buffering role by suppressing phenotypic variability in

animals and plants, thereby allowing genetic variation to accumulate in a cryptic form [9, 10].

However, the developmental mechanisms underlying variability upon Hsp90 impairment are

not understood. Furthermore, recent evidence has suggested a more complex picture as per-

turbations of Hsp90 can also reduce phenotypic variance, indicating a dual role for this chaper-

one as either a potentiator of variability or buffer [11]. To date, genome-wide mutagenesis

screens to identify factors shaping phenotypic variability have not been performed in multicel-

lular animals. Therefore, it remains largely unclear: (1) what are the genes that modulate devel-

opmental trait variance as a response to a specific perturbation, (2) how these genes fit in

developmental gene networks, and (3) what their specificity is to the phenotypic trait of inter-

est within the context of a whole organism.

Here, we address these questions using C. elegans as a model. Developmental patterning in C.

elegans is highly stereotypical and these animals are thought to be near-eutelic; that is, there is an

almost invariant number of 959 somatic cells present in every adult hermaphrodite [12]. Fur-

thermore, the complete lineage of all cells is known, allowing precise tracing of developmental

Stem cell robustness to noise in C. elegans
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Box 1. Developmental robustness and variance–modulating genes.

Robustness is the ability of a biological system to withstand perturbations, such as

changes in the environment or the inherent stochasticity of molecular processes (noise),

in order to produce a consistent output [2, 5, 21]. By extending this definition to a phe-

notypic trait and development, a robust phenotype is characterised by lack of, or low,

variation under a given perturbation. Developmental phenotypes can be studied at

many different levels of biological organisation, therefore robust and variable pheno-

types most often coexist within a given system. For example, phenotypes can range from

morphology to behaviour or signalling pathway activity to gene expression. When con-

sidering multicellular organisms, phenotypic variation can be quantified among related

cells within a single individual reflecting cell-to-cell heterogeneity or among different

individuals of the population.

Mutations in certain genes can lead to loss of developmental robustness resulting in a

significant increase in phenotypic variability. To study phenotypic variability as a conse-

quence of reduced robustness, one needs to consider the phenotypic distribution of the

population, as opposed to simply relying on phenotypic averages [22]. When quantifying

phenotypic variability, one concern is that many developmental mutants are phenotypi-

cally more variable than the wild-type (WT); therefore, an increase in variance may be a

by-product of differences in the mean [4]. One way to address this is by specifically

studying mutations that cause changes in variance, selecting against those that change

the mean [2]. Another possibility is to take into account the complex relationship

between variance and mean for each phenotype and study cases in which a change in

variance is higher than expected for a given value of the mean [6]. In cases in which phe-

notypic variance increases while the mean is the same, the phenotypic distribution

expands on both sides of the mean, leading to 2-sided phenotypic variants. These are

interesting to study developmentally and might be useful as a proxy for distinguishing

from mutations with low penetrance, which might also increase variance, but without

showing 2-sided phenotypic effects [2]. However, developmental constraints may allow

phenotypic variants on one side of the distribution only.

This study focuses on mutations inducing seam cell number variability to noise among

isogenic C. elegans individuals in the population. We refer here to genes that, when

mutated or deleted, lead to an increase in phenotypic variance to a given perturbation as

variance-modulating genes (also called phenotypic capacitors in the literature). Discov-

ering such genes and characterising their mode of action is a fundamental problem in

biology that relates to the genotype-to-phenotype mapping. Variance-modulating genes

can be identified through various experimental methods. Genetic screens focusing on

trait variance as the phenotype of interest have not been previously attempted in C. ele-
gans, but have been performed in yeast using quantitative morphology or reporter gene

expression as a read-out [6, 8, 23]. More targeted genetic efforts in flies have contributed

to identifying genomic regions or single genes acting to minimise developmental vari-

ability [24–26]. Quantitative trait loci (QTL) approaches and genome-wide association

studies (GWAS) have also been useful to identify loci controlling trait variance in natural

populations [7, 27–32]. Variance-modulating genes in yeast have been linked to pleiot-

ropy, influencing variance of many independent phenotypes [23]. Developmental vari-

ability across phenotypes may also arise due to sickness or decrease in organismal

fitness, which can be addressed by quantifying certain fitness traits [23, 33]. Variance-

Stem cell robustness to noise in C. elegans
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defects with single-cell resolution [13]. Importantly, C. elegans populations are also isogenic due

to their hermaphroditic reproductive mode. This eliminates a key confounder when studying

phenotypic variance in a population, which is the presence of standing genetic variation.

We particularly focus on seam cells, which are found on both lateral sides of the nematode

and contribute to cuticle secretion together with the surrounding hypodermis [14]. The seam

cells show stem cell-like properties dividing in a symmetric or asymmetric manner during

postembryonic development (Fig 1A). More precisely, animals hatch with 10 embryonically

born seam cells per lateral side, and that number increases to 16 after the early second larval

stage (L2) due to a symmetric division. The cells also pass through a series of reiterative asym-

metric cell divisions during all larval stages, after which one daughter cell differentiates into a

neuronal precursor cell or fuses with the syncytial hypodermis, while the (usually) posterior

daughter cell maintains the stem cell potential (Fig 1A).

The postembryonic lineage behaviour of seam cells is not uniform along the anterior-poste-

rior axis. Cell division patterns differ, for example, between the head seam cells (H0–H2) and

the seam cells in the mid body (V1–V6) or tail (T), and also within these groups of cells. Seam

cell development has been shown to be influenced by a combination of transcription factor

activities including GATA factors and the RNT-1/BRO-1 (Runx1/CBFβ) module [15–18], con-

served signaling pathways such as the Wnt pathway [19], and the heterochronic gene pathway

that regulates developmental timing in C. elegans [20].

Seam cell number in the widely used laboratory reference strain N2 is consistent with a WT

mean of 16 cells per lateral side in the early adult. However, this phenotype is not fully invari-

ant, as it is evident by the low penetrance of animals in the population (typically around 10%)

showing either more or fewer seam cells (mostly 17 and 15 cells, respectively). To explore

mechanisms of developmental robustness, we initiated in this study a forward genetic

approach to identify mutants showing a significant increase in the variability of terminal seam

cell number, indicative of animal-to-animal variability within the population. We demonstrate

that mutations in lin-22, a Hairy/Enhancer of Split (Hes)-related bHLH transcription factor,

increase seam cell number variance via stochastic loss and gain of symmetric divisions that

occur within single animals and occasionally within the same epidermal lineage. Loss of sym-

metric divisions at L2 give rise to more neuroblasts at the expense of seam cells, while symmet-

ric divisions towards the seam cell fate at subsequent developmental stages increase the seam

cell pool. We show that lin-22 is a core component of the seam cell developmental gene net-

work interacting with the Wnt signaling pathway so that lin-22 null mutants show stochastic

modulating factors may have multiple molecular gene functions and although they can

influence trait variability, they may not necessarily evolve due to selection for phenotypic

robustness [2].

A series of questions with regard to genes influencing developmental variability in multi-

cellular animals remain to be answered. For instance, it is not well understood what the

difference is between genes affecting trait mean and variance and how variance-modu-

lating genes fit in core developmental gene networks. Moreover, the specificity of these

genes to a phenotype or perturbation of interest is underexplored, thus it is unknown

how common system-wide effects are. Most importantly, the developmental basis of

phenotypic variability even for well-documented cases, such as upon Hsp90 impairment,

has not been explored.

Stem cell robustness to noise in C. elegans
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Fig 1. Recovery and mapping of mutants with variable seam cell number. (A) Cartoon illustrating the

seam cell lineages in WT. Fluorescent images show expression of 10 scm::GFP (wIs51) positive cells at the

L1 (above) and 16 cells at the early adult stage (below). (B) Design of the genetic screen to recover mutants

with a Vsc phenotype as opposed to Msc or Lsc, based on selection of extreme seam cell number at the F2

generation. Control represents representative data for JR667 (wIs51) strain, black bar shows mean ± SD. (C)

Relationship between SD and mean scn. Each point represents an independently recovered mutant from our

EMS screen. Control strain JR667 is depicted in blue and the vsc1 mutant in red. (D) vsc1 mutants show

variable seam cell numbers (SD = 0.33, n = 278 animals for control JR667, and SD = 1.87, n = 563 for vsc1

mutants). Note that only 1 animal shows extreme seam cell counts in this experiment in WT. Error bar shows

mean ± SD and red stars depict statistically significant change in variance in relationship to control with a

Levene’s median test (P < 0.0001). Numerical data used for Fig 1, B, C, D can be found in S2 Data. SD,

standard deviation; EMS, ethyl methanesulfonate; GFP, green fluorescent protein; L1, first larval stage; Vsc,

variable seam cell number phenotype; Lsc, less seam cells phenotype; Msc, more seam cells phenotype;

SCM, seam cell marker; scn, seam cell number; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2002429.g001
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Wnt pathway activation that correlates with phenotypic variability. We finally study systemic

effects in the nematode and show that gain in variability in seam cell patterning is accompa-

nied by loss of stochasticity or no change in other developmental contexts.

Results

A genetic screen for modulators of seam cell number variance identifies

vsc1

To study the genetic mechanisms underpinning the consistency of seam cell number among

individuals, we set out to isolate mutants showing an increase in seam cell number variance.

To this end, we mutagenised a strain harbouring an integrated scm::GFP transgene (wIs51)

that is commonly used as a seam cell marker [15,34], allowed the F1 animals to produce self-

progeny and selected F2 individuals showing an “extreme” seam cell number phenotype, as

defined by a seam cell count that is either lesser than 15 or greater than 17 cells per lateral side.

This extreme phenotype is very rare (<1%) among WT animals. Variability is defined in this

screen at the level of the population, so we hypothesised that the selected animals would either

show in the next generation a variable seam cell number phenotype (Vsc) or alternatively an

increase (more seam cells phenotype [Msc]) or decrease (less seam cells phenotype [Lsc]) in

terminal seam cell number (Fig 1B). Changes in mean and variance are not mutually exclusive

and the relationship between these 2 measures depends on the developmental system of choice

[2]. We found that the seam cell number variability increases when the phenotypic mean

departs in any direction (increase or decrease) from the average of 16 cells per lateral side.

Therefore, to be confident about a variance change we decided to focus on variable mutants

(vsc) in which the phenotypic mean showed only minimal change compared to the WT (Fig

1C). We also concentrated on mutants showing 2-sided errors—that is, at the same time both

an increase and a decrease in seam cell number within the isogenic population—in an attempt

to dissect the developmental basis of bidirectional variability (Box 1).

One of the recovered mutants that satisfied the above criteria was vsc1. This mutant showed

a statistically significant increase in seam cell number variance without a drastic change in the

mean (WT = 16.05 ± 0.33 SD versus vsc1 = 16.29 ± 1.87 SD) and phenotypic errors on both

sides of the mean (Fig 1D). Interestingly, vsc1, like other recovered vsc mutants, showed higher

seam cell number variability compared to that observed upon impairment of the expression of

genes often considered as bona fide buffering factors such as Hsp90/daf-21 (SD = 0.93; S1A

Fig). We therefore sought to identify these variance modulators and aimed at mapping the

molecular lesion in vsc1. A current method to identify causative mutations from mutagenesis

experiments in C. elegans relies on “mapping-by-sequencing” after crossing to the polymor-

phic C. elegans isolate CB4856 [35,36]. We selected homozygous F2 recombinants based on

phenotypic similarity of their progeny to the mutant parental strain, relying on a metric of

phenotypic variability (SD), the percentage of extremes in the population and the percentage

of animals showing 16 seam cells (S1B Fig). After pooling together these lines and whole

genome sequencing, we identified a region of around 0.5–1 Mb on the left arm of chromosome

IV that contained exclusively N2 markers and was thus likely to harbour the causative muta-

tion for seam cell number variability (S1C Fig).

The causative mutation in vsc1 maps upstream of the transcription factor

lin-22

Within this mapping interval, we found a 3 kb deletion in vsc1 mutants located at the upstream

region of the lin-22 gene (Y54G2A.1) (Fig 2A). lin-22 encodes a bHLH transcription factor

Stem cell robustness to noise in C. elegans
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that is related to Hes transcriptional repressors [37, 38]. Upon Sanger sequencing of that

region, we found that the deletion extends to the 50 end, deleting part of the last exon of the

previous gene vrp-1 (Y54G2A.3), and includes a 1.7 kb insertion aligning to sequences of the

downstream gene mca-3 (Y67D8C.10), collectively comprising the icb38 mutation (Fig 2A and

S1 Text). The following lines of evidence suggested that the icb38 mutation is a new allele of

lin-22; therefore, we refer to it as lin-22(icb38). First, it has been previously shown that a hall-

mark phenotype in hermaphrodites upon disrupting lin-22 function is an increase in the num-

ber of sensory post-deirid (PDE) neurons [37, 39, 40]. In WT, 1 PDE neuron is found per

lateral side at the posterior body and is derived from the anterior V5 daughter following the

first L2 division [13]. We found that vsc1 mutants, similar to other lin-22 mutants generated

via Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein-9

(CRISPR/Cas9) genome editing or recovered from independent mutagenesis experiments also

Fig 2. The icb38 mutation represents a loss of function mutation in lin-22. (A) Illustration of the lin-22(icb38)

mutation, which is a 3,329 bp deletion removing part of the distal lin-22 promoter (2,371 bp upstream of the lin-22 ATG).

The deletion also removes part of the third exon and 30 UTR of the upstream gene Y54G2A.3. The deleted part is

replaced by a 1,733 bp insertion consisting of exon 7 and parts of introns 6 and 7 of the downstream gene mca-3. The

position of other lin-22 alleles described in the manuscript is shown on the wild-type sequence. (B) Quantification of the

number of PDE neurons (dat-1::GFP foci) in the EMS-derived lin-22(icb-38) mutant and CRISPR-derived lin-22 mutants

(n� 30). Reference sample is egIs1 containing only the marker. (C) Quantification of seam cell number in lin-22(icb38)

and other CRISPR-derived lin-22 mutants (n� 30). Note an increase in seam cell number variance in lin-22 mutants

depicted with red stars. Black stars show statistically significant changes in the mean with one-way ANOVA followed by

the Dunnett test, and red stars depict changes in variance with a Levene’s median test (in both cases, **** corresponds

to P value < 0.0001). Error bars show mean ± SEM (B) or mean ± SD (C). Numerical data used for Fig 2B, C can be

found in S2 Data. CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; EMS, ethyl methanesulfonate;

GFP, green fluorescent protein; PDE, post-deirid; scm, seam cell marker; UTR, untranslated region.

https://doi.org/10.1371/journal.pbio.2002429.g002
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showed a significant increase in PDE number as monitored by an increase in dat-1::GFP foci

[41] (Fig 2B and S2A Fig). This included putative null alleles (icb49, icb50 due to premature

stop codons), another allele with an introduced stop codon in the third exon (ot267), as well as

a mutation (ot269) of a single nucleotide located 4,940 bp upstream from the lin-22 ATG (Fig

2A), in a region that is deleted in vsc1 mutants, suggesting that this promoter region may play

some regulatory role. Importantly, we found that all lin-22 mutant alleles as well as RNA inter-

ference (RNAi) treatment targeting the lin-22 gene and not the upstream gene vrp-1, led to an

increase in seam cell number variability (Fig 2C and S2B–S2F Fig).

Importantly, seam cell number variability in lin-22(icb38) mutants was cell marker-inde-

pendent as we observed a similar phenotype when using a bro-1::GFP transgene to label the

seam cells [17] (S2G Fig). We also used genome editing to engineer a putative null lin-22
mutation in the CB4856 isolate and found a comparable increase in seam cell number vari-

ability and PDE number, suggesting that these phenotypes were independent of the N2

genetic background (S2H and S2I Fig). Seam cell number variability was sex-independent

because it was also observed in males (S2J Fig), as well as lateral side-independent, as we

found no correlation between seam cell counts obtained from one side of the animal to those

for the other (S2K Fig).

lin-22 is expressed in seam cells anterior to V5

Because the lin-22(icb38) mutation mapped to the upstream noncoding region of lin-22, we

went on to study aspects of lin-22 promoter regulation and the spatiotemporal pattern of lin-
22 expression. To this end, we first constructed reporter fusions by placing either (1) the full

lin-22 promoter (approximately 5 kb), or (2) the distal to ATG lin-22 promoter (approximately

3 kb) that is deleted in lin-22(icb38) mutants, or (3) the proximal lin-22 promoter (approxi-

mately 2.2 kb) remaining in lin-22(icb38) mutants in front of green fluorescent protein (GFP).

We found that the full promoter drove lin-22 expression mostly in the seam and hypodermis

(hyp7), but also to a much lesser extent in the intestine (Fig 3A and 3B). We also observed that

the distal lin-22 promoter drove GFP expression in seam cells and hypodermis, indicating that

the deleted region in lin-22(icb38) mutants contained some putative seam cell enhancer activity

(Fig 3A and 3B). The proximal lin-22 promoter fusion showed rare GFP expression in the

seam but more frequent expression in the intestine (Fig 3A and 3B). Interestingly, within the

deleted lin-22 promoter region in lin-22(icb38) mutants we identified 2 conserved regions:

conserved region 1 (CR1) and conserved region 2 (CR2) between C. elegans and other related

Caenorhabditis nematodes (S3A Fig). We showed that CR1, which contains at least 2 putative

GATA binding sites (S3A Fig), was required to drive GFP expression in the seam (Fig 3A and

3B). CR1 was also partially sufficient to restore expression in seam cells as 65% of the animals

showed some GFP expression in the seam (Fig 3A and 3B, n = 50), out of which 18% showed

GFP expression in all seam cells that is fully reminiscent of the expression driven by the 3 kb

distal fragment.

To study the endogenous lin-22 expression pattern, we used single molecule fluorescent in

situ hybridization (smFISH), which allows detection of single mRNAs, thus providing a quan-

titative account of gene expression [42]. In WT, we found that lin-22 expression in the seam is

restricted to H0–H2 and V1–V4 cells (Fig 3C and 3D and S3B Fig). After cell division, we

found that daughter cells show initially comparable amounts of lin-22 expression, both after

the L2 symmetric and the subsequent asymmetric divisions (Fig 3C and S3C Fig). However,

lin-22 expression was maintained specifically in the posterior seam cell–fated daughter cell late

after asymmetric divisions (Fig 3C and S3C Fig). In contrast to the WT pattern, lin-22 expres-

sion was completely absent in lin-22(icb38) mutants in the seam at all developmental stages
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Fig 3. Quantification of lin-22 expression in the seam. (A) Transgenic animals carrying transcriptional

reporters consisting of various fragments of upstream of lin-22 sequences fused to GFP. From top to bottom:

full lin-22 endogenous promoter, distal lin-22 promoter region that is deleted in lin-22(icb38), proximal lin-22

promoter present in lin-22(icb38), distal lin-22 promoter with deleted CR1, and CR1 only driving expression of

GFP. White arrows indicate expression in the seam cells; white arrowheads expression in the hypodermis and

green arrowheads expression in intestinal cells. (B) Quantification of expression pattern for each

transcriptional reporter (n� 35 animals). (C) Representative smFISH images showing lin-22 expression

(black spots correspond to mRNAs and seam cells are labelled in green due to scm::GFP expression) in wild-

type V cells after the symmetric L2 division (top), the L2 asymmetric division (middle), and late after the L2

asymmetric division (bottom). (D) Quantification of lin-22 spots per seam cell in wild-type and lin-22(icb38)

animals at the late L1 stage (n� 10 cells per genotype). (E) Quantification of lin-22 spots in wild-type, lin-22

(ot267), lin-22(ot269), and lin-22(icb49) mutants in pools of H cells and V cells at the late L1 stage (n� 41).

(F-G) Comparison of number of lin-22 spots between wild-type and the elt-1(ku491) mutant (F) or the egl-18

(ok290) mutant, (G) both at the late L1 stage in pools of H and V cells (n� 49). Black stars show statistically

significant changes in the mean with a t test or one-way ANOVA as follows: * P < 0.05, ** P < 0.01,

*** P < 0.001, **** P < 0.0001. Reference samples for comparisons in E, F, G are the control samples

depicted in black. Scale bars in A and C are 100 μm and 10 μm, respectively. Error bars show mean ± SEM

(D, F, G) or mean ± SD (E). Numerical data used for Fig 3B, D, E, F, G can be found in S2 Data. CR1,

conserved region 1; GFP, green fluorescent protein; L1, first larval stage; L2, second larval stage; smFISH,

single molecule fluorescent in situ hybridization.

https://doi.org/10.1371/journal.pbio.2002429.g003
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(Fig 3D and S3B Fig). Instead, we found stronger expression in the intestine (S3D Fig), which

is consistent with the increased intestinal expression that we also observed with the proximal

lin-22 promoter::GFP fusion. Remarkably, lin-22 expression in the seam was decreased in the

lin-22(ot269) mutant background in which a single base substitution disrupts a GATA site

within the CR1 region at the distal promoter of lin-22 (Fig 3E and S3A Fig). However, lin-22
seam cell expression was increased in lin-22(ot267) and the putative null allele lin-22(icb49)
(Fig 3E), indicating that LIN-22 may regulate its own expression via negative feedback.

To address whether epidermal GATA factors may be upstream regulators of lin-22, we

quantified lin-22 seam cell expression by smFISH in loss of function mutants of elt-1 and egl-
18 [18,43] (Fig 3F and 3G) and elt-1/egl-18 RNAi-treated animals (S3E Fig). In both cases, the

number of lin-22 spots detected was decreased. Taken together, our data suggest that the lin-22
(icb38) mutation leads to loss of lin-22 expression in the epidermis due to the deletion of a

GATA site-containing enhancer that is found at the distal end of the lin-22 promoter.

Stochastic loss and gain of symmetric cell divisions underlie seam cell

number variability in lin-22 mutants

The developmental regulation of seam cell number relies on the right balance between epider-

mal cell proliferation and differentiation. These processes can be monitored by using the

scm::GFP transgene and lineage analysis, which relies on following GFP-positive cells and

their patterns of division. When a scm::GFP positive cell divides, the 2 daughter cells initially

express GFP; however, GFP expression persists in the daughter cell that maintains the seam

cell fate and disappears in the daughter cell that differentiates. Most V lineages contribute 2

seam cells to the terminal seam cell number, with the exception of V5 that contributes only 1,

as it does not undergo a symmetric division at the early L2 stage (Fig 1A). Previous studies had

shown that the increase in PDE number in lin-22 mutant hermaphrodites stems from putative

homeotic transformations of V1–V4 to that of V5 [37,40], leading to the prediction that lin-22
mutants were likely to show a decrease in seam cell number as opposed to variability.

To decipher the developmental basis of the Vsc phenotype, we performed stage-specific

phenotypic analysis using fixed animals carrying both the scm::GFP and dat-1::GFP markers.

We observed that lin-22(icb38) eggs hatch with 10 seam cells as normal, indicating that the

increase in variability happens postembryonically. Following the first L2 division, we found

that at least 2, but up to 4, V1–V4 cells stochastically generate a neuroblast in all animals ana-

lysed (n� 50), instead of dividing symmetrically to produce 2 seam cells as in WT (error 1 in

Fig 4A). However, at the same time, we observed previously uncharacterised defects, namely

animals showing occasional H2 symmetric divisions at the L2 stage (error 2) and V1-V4/H cell

symmetric divisions at the third larval (L3) and fourth larval (L4) stage (errors 3, 4; Fig 4A), as

opposed to the WT asymmetric divisions for these lineages at these developmental stages.

To verify these initial observations and establish complete seam cell lineages, we performed

time-lapse microscopy by imaging scm::GFP worms while growing from eggs to adults in cus-

tom-made microchambers and with 20 minute time resolution [44]. We found frequent V1–

V4 asymmetric divisions at the early L2 stage, with the anterior daughter contributing ectopic

PDE neurons instead of seam cells (in 32 out of 56 V1–V4 cell lineages analysed) (Fig 4A and

4B), although in some instances the anterior daughters gave rise to hybrid lineages contribut-

ing both neurons and seam cells (in 9 out of 56 V1–V4 lineages), as previously described [40].

Importantly, we validated the symmetric H2 divisions (in 5 out of 14 of H2 cell lineages) at the

L2 stage. We also validated stochastic symmetric divisions for V1–V4 (in 21 out of 56 V1–V4

lineages) and H1/H2 cells (in 11 out of 28 H1/H2 cell lineages) at the L3 and L4 stage (Fig 4A

and 4B and S4B Fig). Infrequently, we found single V1–V4 cell lineages repeating the L2
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division pattern at the L3 stage (in 3 out of 56 V1–V4 lineages) or V5 and V6 symmetric divi-

sions at the L3 and L4 stage (in 3 out of 28 V5–V6 lineages; S4 Fig). We conclude that the

developmental basis of the cell number variability in lin-22 mutants is the stochastic loss and

gain of symmetric cell divisions. Notably, these developmental errors affect the terminal seam

cell number in opposing directions and can co-occur within a single animal (S4A Fig) and cell

lineage (Fig 4B).

The lineage analysis suggested that 2 sides of the seam cell number distribution could be

partially separated in time, with ectopic neurogenesis occurring exclusively at the L2 stage and

gain of seam cell fate happening mostly at the L3 and L4 stage. Therefore, we predicted that if

animals were forced to skip the L2 stage, then seam cell number would decrease in WT due to

loss of the L2 symmetric division, whereas gain of seam cell fate at the L3 and L4 stage would

antagonise the loss of L2 symmetric divisions in lin-22 mutants. To this end, we knocked

down the expression of lin-28, a factor required for events specific to the L2 stage. In keeping

with our prediction, we found that although seam cell numbers decreased in lin-28 RNAi-

Fig 4. The developmental basis of variability in lin-22 mutants. (A) The upper panel shows wild-type seam cell lineages,

while the bottom panel indicates the most frequently occurring errors in lin-22(icb38) mutants (n = 14 independent complete

lineages). The developmental errors are grouped for simplicity in 4 main classes and presented as a function of the

developmental stage. The percentages refer to occurrence of these errors within the total number of relevant cell lineages. Note

that the errors described are not independent, so they can occur within the same animal and even within the same lineage (see

also S4 Fig). (B) Heat map showing the frequency of errors per cell lineage and developmental stage (n = 14 lineages). Blue

depicts errors leading to gain of terminal cell number due to gain of symmetric division, and red depicts errors leading to loss of

symmetric division. (C-D) Quantification of seam cell number (C) and number of PDE neurons (D) in wild-type (n� 36) and lin-

22(icb38) animals (n� 30) treated with control or lin-28 RNAi. Black stars show statistically significant changes in the mean with

a t test (P < 0.0001). Error bars show mean ± SD (C) or mean ± SEM in (D). Numerical data used for Fig 4B, C, D can be found

in S2 Data. L2, second larval stage; L3, third larval stage; L4, fourth larval stage; PDE, post-deirid; RNAi, RNA interference.

https://doi.org/10.1371/journal.pbio.2002429.g004
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treated WT animals, this decrease was suppressed in lin-22(icb38) mutants (Fig 4C). Instead,

the number of ectopic PDE neurons, which is exclusively determined at the L2 stage, decreased

in lin-28 RNAi-treated both in lin-22(icb38) animals and the WT, as predicted (Fig 4D).

Gene expression changes associated with loss and gain of daughter cell

fate symmetry in lin-22 mutants

We went on to explore gene expression changes that might be associated with the daughter cell

fate symmetry defects as predicted based on lineage analysis. To this end, we studied the

expression of key genes of the seam cell gene network by smFISH. We first detected the expres-

sion of the GATA transcription factor elt-1 involved in epidermal cell specification. We partic-

ularly focused on H2 and V1–V4 cells, which are adjacent cells and yet display contrasting

developmental errors at the early L2 stage—H2 often divides symmetrically in the mutant as

opposed to asymmetrically, and V1–V4 divide asymmetrically in the mutant rather than sym-

metrically. Transcripts for elt-1 were detected in WT animals in both the anterior and poste-

rior V1–V4 daughters following the L2 symmetric division and mostly in the posterior

daughters of H2 (Fig 5A and 5B). In stark contrast, we found that in lin-22(icb38) mutants the

elt-1 expression pattern in V1–V4 daughter cells became asymmetric with the posterior cells

expressing more elt-1 than the anterior (Fig 5A and 5B). At the same time, elt-1 expression in

H2 was found to convert to a symmetric pattern in lin-22 mutants (Fig 5A and 5B), with ante-

rior daughter cells in the mutant showing an increase in expression compared to the WT.

Another candidate we studied is the posterior Hox gene mab-5, previously shown to expand

qualitatively to the anterior side in lin-22 mutants [37, 45]. In WT, we detected expression at

the posterior end of the animal and specific localisation to the posterior V5 daughter cell after

the first L2 division (Fig 5C). In lin-22(icb38) mutants, mab-5 signal expanded anteriorly but

mRNA spots were detected in an asymmetric way in posterior V cell daughters and at compa-

rable levels to expression in V5 (Fig 5C and S5A Fig). Therefore, with regard to both elt-1 and

mab-5 expression, the V1–V4 gene expression pattern in lin-22 mutants is reminiscent of that

in V5. In both cases, the expression pattern change was very frequent (S5B and S5C Fig), yet

variable among cells of a single animal, with some seam cells showing a change in pattern

when adjacent cells did not (S5D Fig).

We further studied the expression of the GATA factor egl-18, which acts downstream of the

Wnt pathway influencing seam cell fate [18]. In WT animals, egl-18 is enriched in the posterior

daughter cell following the L2 asymmetric division of H2 (Fig 5D), and also enriched in the

posterior daughter cells following the subsequent V1–V4 asymmetric division (Fig 5E and 5F).

In lin-22(icb38) mutants, we quantified an increase in egl-18 expression in anterior H2.p

daughter cells at the L2 division with 36% (8 out of 22 H2.pa cells) of egl-18 expression values

in lin-22(icb38) mutants outside the WT range (Fig 5D). Interestingly, this frequency of egl-18
increase in expression approximately matches the frequency of cell fate symmetry observed in

lineaging. At the subsequent asymmetric division, egl-18 expression in the mutant also

expanded with typically the most anterior of the 4 V cell daughters (V.paa) showing higher

expression in the mutant as compared to the WT, with 16 out of 68 egl-18 expression values in

the mutant V.paa cells being outside the WT range (Fig 5E and 5F). Importantly, although this

increase in V.paa egl-18 expression was observed in the majority of the animals analysed (19

out of 20 animals), in most cases only some V cells were displaying this pattern (17 out of 19

animals), indicating again substantial cell-to-cell variability (S5D and S5E Fig).

Anterior daughter cell differentiation culminates in cell fusion to the adjacent hypodermal

syncytium, a process that is mediated by the transmembrane fusogen protein EFF-1 [17,46]. In

WT, we detected very tightly regulated eff-1 induction in bursts localised to the anterior
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Fig 5. Gene expression changes associated with loss and gain of daughter cell fate symmetry in lin-

22 mutants. (A-B) Representative smFISH images and quantification of wild-type and lin-22(icb38) animals

at the L2 symmetric division stage using an elt-1 probe. (A) Comparable amounts of elt-1 spots are detected in

wild-type V cell daughters and more spots in the posterior H2 daughter. In lin-22(icb38) animals, more spots

are detected in the posterior V daughters than the anterior (marked by arrowheads) and even numbers in the

2 H2.p daughters (arrow points to anterior H2.p daughter cell). (B) Quantification of elt-1 expression in H2.p

daughters (n > 9) and pools of V.p daughter cells (n > 41) of wild-type and lin-22(icb38) animals at the L2

symmetric division stage. (C) mab-5 expression expands to posterior daughters of V1–V4 cells (arrowheads)

in lin-22(icb38) animals, reminiscent of the expression in the posterior V5 cell in wild-type (arrow). (D-F) egl-18

smFISH images and quantification of wild-type and lin-22(icb38) animals. (D) Quantification of egl-18 smFISH

spots in the H2.p cell daughters at the L2 stage (n� 21). (E) Images depicting egl-18 expression at the L3

stage. Note expression in anterior daughter cells in lin-22(icb38) animals (arrowheads). (F) Quantification of

egl-18 smFISH spots in V1-V4 cells (n� 68) of wild-type and lin-22(icb38) animals at the L2 asymmetric

division stage. (G) Representative eff-1 smFISH images of wild-type and lin-22(icb38) animals at the L3

asymmetric division stage. Note absence of signal in the most anterior of the 4 daughter cells in lin-22(icb38)

animals (arrowheads). H2 consists of 4 cells that have arisen due to symmetric division at the L2 stage. (H)

Quantification of seam cell number in wild-type (n = 39), lin-22(icb38) (n = 29), eff-1(hy21) (n = 31), and lin-22

(icb38); eff-1(hy21) (n = 35) animals. Note that the eff-1(hy21) does not show a significant difference in seam

cell numbers compared to wild-type, but the double mutant does in comparison to both parental strains. Black

stars show statistically significant changes in the mean with a t test or one-way ANOVA /Dunnett’s test. Scale

bars in A, C, E, and G are 10 μm; black spots correspond to mRNAs and green labels the seam cell nuclei.

Error bars in B, D, F, H show mean ± SD. Numerical data used for Fig 5B, D, F, H can be found in S2 Data.

GFP, green fluorescent protein; L2, second larval stage; L2sym, symmetric first division at the L2 stage; L3,

third larval stage; SCM, seam cell marker; smFISH, single molecule fluorescent in situ hybridization.

https://doi.org/10.1371/journal.pbio.2002429.g005
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differentiating daughter cells (Fig 5G). Consistent with the stochastic loss of differentiation in

lin-22(icb38) mutants and the increase in egl-18 expression in the most anterior V cell daugh-

ters, we found frequent absence of eff-1 expression in V.paa cells (19 out of 35 cells; Fig 5G)

and enhanced fusion defects in eff-1(hy21); lin-22(icb38) double mutants (Fig 5H). Taken

together, these gene expression results highlight the loss and gain of molecular symmetry at

different cell lineages and cell-to-cell variability in gene expression.

lin-22 mutants show variable increase in Wnt pathway activity in the

seam

To understand further the mechanistic basis of seam cell number variability in lin-22 mutants

and the unexpected increase in seam cell number in particular, we performed gene expression

analysis via RNA sequencing. Although we used whole animal tissue in these experiments, we

hypothesised that we might be able to pin down some specific changes relevant to the epider-

mis due to the largely tissue-specific lin-22 expression pattern. Validating the approach, cell

fate transformations in lin-22 mutants have been attributed to transcriptional de-repression of

neuronal regulators [37], and we found that key neuronal development genes, such as the

bHLH factors lin-32 and hlh-14, were significantly upregulated in lin-22 mutants (S1 Data and

S6A Fig). Consistent with our smFISH results, we found a decrease in lin-22 expression specifi-

cally in lin-22 mutants that harbour mutations in upstream regulatory sequences (S6B Fig).

We then focused on putative components of the seam cell gene network to identify gene

expression changes that may have a direct influence on seam cell patterning (S6B Fig). Inter-

estingly, we found changes in Wnt-related components in lin-22 mutants, which led us to

explore further a possible link between lin-22 and Wnt signalling.

To address this possibility, we first compared POP-1 localisation between lin-22 mutants

and the WT. POP-1, which is the T-cell factor/lymphoid enhancer factor (TCF/LEF) homolog

in C. elegans [47], controls multiple asymmetric divisions during embryo and larval develop-

ment [48,49]. POP-1 has been shown to asymmetrically localise in seam cell divisions with ante-

rior nuclei containing more POP-1 than SYS-1, leading to unbound POP-1 repressing Wnt-

regulated genes, while posterior signalled cells exhibit less localisation to the nucleus, so that all

POP-1 is bound to SYS-1 complex, which activates target genes [19,50]. We imaged POP-1:

GFP localisation at the 4 V cell stage in L2 asymmetric division. For each WT cell pair, we

found pronounced nuclear localisation at the anterior daughter nucleus (a) (Fig 6A), with only

6.6% of pairs showing aberrant localisation such as equal GFP intensity between the 2 daughter

cells (5.3%) or enrichment at the posterior nucleus (p) (a< p in 1.3%; n = 76). However, we

found that 30.1% of daughter V pairs in lin-22(icb38) mutants showed aberrant POP-1:GFP

polarity (a = p in 21.9% and a< p in 8.2%; n = 146 and Fisher’s test P value< 0.0001; Fig 6A).

To monitor Wnt pathway activity directly, we introduced the POP-1 and HMG-helper

optimal promoter (POPHHOP) marker in lin-22(icb38) mutants [51]. This marker reports

POP-1 binding to a synthetic enhancer and is strongly expressed around the tail and mildly in

the most posterior seam cells [51]. Interestingly, lin-22(icb38) mutants displayed an expansion

of Wnt pathway activity with anterior to somatic gonad seam cells, including H cells, fre-

quently expressing the marker (10 out of 21 animals in the mutant as opposed to 2 out of 30 in

the WT, Fisher’s test, P value < 0.01) (Fig 6B). Interestingly, the expansion in the POPHHOP

expression domain was sporadic and not observed in a graded manner from the highly

expressing cells in the tail to the head of the animal. This indicates cell-to-cell variability in

Wnt pathway activation along the body (Fig 6B).

To address whether this variability in Wnt pathway activity may have any phenotypic con-

sequences for the seam, we sought to establish a correlation between POPHHOP marker
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activation and seam cell fate. Due to technical limitations, we were unable to follow cells

expressing the marker using time-lapse microscopy. However, we focused on the activation of

the marker in H cells and a partially penetrant yet distinctive phenotype in lin-22 mutants,

which is the presence of supernumerary seam cells in the head region in around 40% of the

Fig 6. lin-22 is both upstream and downstream of Wnt signalling. (A) Wild-type and lin-22(icb38) animals

at the L2 asymmetric division stage carrying a POP-1:GFP translational reporter. Note aberrant polarity in lin-

22(icb38) mutants (white arrowhead) and variable intensity (we found 50% of pairs showing comparable

intensity to the wild-type posterior and 50% to the wild-type anterior cells). (B) Representative wild-type and

selection of lin-22(icb38) animals at the L2 stage carrying the POPHHOP reporter. Note expression in more

anterior seam cells in lin-22(icb38) mutants (white arrowheads). (C) Representative lin-17 smFISH images of

the anterior body of wild-type and lin-22(icb38) animals at the L3 division stage. (D) Quantification of lin-17

smFISH spots (in black) in V1 and H cells (labelled with GFP) of wild-type (n = 12) and lin-22(icb38) (n = 17)

animals at the L3 asymmetric division stage. (E) Quantification of seam cell numbers in wild-type animals

expressing lin-17 under a seam cell-specific promoter. (F) Quantification of lin-22 smFISH spots in wild-type

and the Wnt ligand double mutant, cwn-1(ok546);egl-20(n585) at the late L1 stage in pools of H (n > 49) and V

cells (n > 68). Black stars show statistically significant changes in the mean with a t test (reference sample in

D, F is wIs51 depicted in black). Scale bars are 10 μm. Error bars show mean ± SD (D, E) or mean ± SEM (F).

Numerical data used for Fig 6D, E, F can be found in S2 Data. GFP, green fluorescent protein; L2, second

larval stage; L3, third larval stage; POPHHOP, POP-1 and HMG-helper optimal promoter; SCM, seam cell

marker; smFISH, single molecule fluorescent in situ hybridization.

https://doi.org/10.1371/journal.pbio.2002429.g006
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animals, likely due to symmetric divisions increasing the seam cell pool in that area (S5F Fig).

We asked whether animals that show ectopic POPHHOP expression in H cells at the L2 stage

are more likely to develop head seam cell clusters. We found that lin-22(icb38) animals selected

for POPHHOP marker activation in the head are more likely to show this phenotype com-

pared to animals not expressing the marker or animals selected at random (S5G Fig), thus vari-

able Wnt pathway activation in lin-22 seam cells may be directly linked to changes in cell fate.

To explore further the changes in Wnt pathway activity, we compared the expression of

Wnt ligands and receptors between lin-22(icb38) and WT animals. We found evidence that the

Wnt receptor lin-17, which is normally expressed only at the posterior end of the animal at the

L3 stage, is ectopically induced in more anterior H and V seam cells in lin-22(icb38) mutants

(Fig 6C and 6D and S5H Fig). We hypothesised that an expansion in lin-17 expression may

lead to more cells receiving Wnt ligands, thus acquiring the seam cell fate. To test this hypothe-

sis, we produced transgenic animals expressing lin-17 under a seam cell promoter and showed

that this transgene is sufficient to cause an increase in seam cell number and variance, although

the latter is likely to be purely technical due to the unstable nature of the transgene arrays (Fig

6E). Consistent with the decrease of lin-22 expression in egl-18 loss of function mutants, we

obtained further evidence that lin-22 also acts downstream of the Wnt pathway, as lin-22
expression was mildly decreased in the double Wnt ligand mutant background cwn-1(ok546);
egl-20(n585), which is aphenotypic for seam cell number (Fig 6F) [52]. Taken together, our

data provide support for a novel crosstalk between lin-22 and Wnt signalling.

lin-22(icb38) mutants show defects mainly at the epidermis

It is possible that regulators identified in our seam cell screen might also increase variation for

a number of independent phenotypes, which might be indicative of loss of animal fitness

[23,33]. To test whether lin-22 mutants show any fitness defect, we quantified brood size in

lin-22(icb38) animals and found no statistically significant difference to the WT N2 (Fig 7A).

To assess tissue specificity of the phenotypic variability, we looked into other developmental

decisions involving tight control of cell numbers in C. elegans. One case of natural variability

in cell numbers in the WT concerns P3.p, which is the most anterior vulval cell that divides

once before fusing with the epidermis in around 50% of the animals. We compared P3.p divi-

sion frequency between the WT and lin-22(icb38) and found that P3.p division occurs in nearly

100% of lin-22(icb38) mutants (Fig 7B). We then quantified by differential interference con-

trast (DIC) microscopy the number of Pn.p cells induced to acquire vulval fates and found a

very mild increase in lin-22(icb38), mainly due to low penetrant P3.p and P4.p induction (S7A

Fig). We also quantified the number of uterine π cells using lin-11::GFP as a marker [53] and

found no difference between lin-22(icb38) mutants and the WT (S7B Fig). Last, we quantified

the number of intestinal cells using an elt-2::GFP marker [54] and found a marginal decrease

in the number of nuclei in lin-22(icb38) mutants compared to the WT (S7C Fig). We conclude

that lin-22(icb38) mutants show an increase in phenotypic variability predominantly in the

seam.

Discussion

lin-22 and single genes modulating variance

In this study, we performed a targeted genetic screen in C. elegans to identify factors shaping

phenotypic variance. In particular, we screened for mutants showing an increase in epidermal

seam cell number variability without a change in the mean. We identified a deletion in the dis-

tal promoter of the transcription factor lin-22 as the molecular cause of seam cell number vari-

ability. We showed that this deletion removes a seam cell enhancer and, thus, attenuates lin-22
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expression to the extent that we could no longer detect any transcript in the seam. Consistent

with this finding, the recovered mutant phenocopies other lin-22 null alleles with respect to

seam cell number variability.

Identifying genes that modulate (enhance or suppress) phenotypic variance in a given devel-

opmental system is a fundamental problem in biology that has implications for disease and

drug discovery [55]. A key question is whether variance modulators are integrated within devel-

opmental gene networks or they are superimposed as core cell homeostasis factors influencing

variance. There are examples in the literature supporting the latter possibility with the most

Fig 7. Context-dependent gain and loss of variability in lin-22(icb38) mutants. (A) Quantification of

brood size in wild-type (n = 13) and lin-22(icb38) mutants (n = 15). Black bars show mean ± SEM. (B)

Quantification of P3.p division frequency in wild-type and lin-22(icb38) animals. Note that almost all mutant

animals show division of P3.p. (C) Model showing lin-22 interactions discovered in this study (orange), while

previously known interactions are shown with dashed grey lines. These new interactions may not be direct.

Seam cell number variability is increased in lin-22 mutants due to loss and gain of symmetric divisions.

Stochastic loss of symmetric divisions at the L2 stage generates more neuroblasts at the expense of seam

cells. Stochastic gain of symmetric divisions towards the seam cell fate mostly at the L3/L4 stage generates

more seam cells. Cell-to-cell variability in Wnt pathway activation correlates with phenotypic variability.

Numerical data used for Fig 7A, B can be found in S2 Data. L2, second larval stage; L3, third larval stage; L4,

fourth larval stage.

https://doi.org/10.1371/journal.pbio.2002429.g007
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prominent being the molecular chaperone HSP90, which is thought to suppress variation for a

variety of different phenotypes [9,56]. More high-throughput screens in yeast for genes buffer-

ing morphological variation have also identified chromatin factors, cell cycle proteins, compo-

nents of stress response, and essential genes as key components influencing variability [6,23]. In

a recent example in plants, a mutation in a broadly expressed mitochondrial protease was

found to increase variability in sepal size and shape [57]. In this case, organ shape uniformity

was shown to arise from spatiotemporal averaging of already variable cellular growth in WT.

Our seam cell number variability screen identified a transcription factor, which we placed

within the seam cell gene network (Fig 7C). Consistent with our definition of genes modulat-

ing variability (Box 1), lin-22 null mutants show pronounced phenotypic variability in the

seam with 2-sided phenotypic errors and no change in the mean. This phenotypic variability is

tissue specific, with no evidence for systemic defects; therefore, it is unlikely to be driven by

animal sickness. Interestingly, we also demonstrate that the recovered lin-22 mutation and

other vsc mutants have more pronounced effects on variability than impairment of Hsp90. Our

ability to isolate vsc mutants is consistent with theoretical work that suggests modulators of

variance may be widespread in developmental systems [58].

Related Hes bHLH proteins act in mammals as transcriptional repressors and play a role in

the maintenance of stem cells and progenitors in neural and digestive organ development,

influencing binary cell fate decisions [38]. They are also relevant to disease as they are thought

to maintain the stemness of cancer stem cells [59]. Stochastic variation in the expression of

Hes1 in mouse embryonic stem cells influences neuronal versus mesodermal differentiation

and contributes to heterogeneous cell responses such as the timing of commitment of pluripo-

tent stem cells to differentiate [60,61]. In comparison to canonical HES factors, LIN-22 does

not physically interact with the Groucho homologue UNC-37 as it is lacking a Groucho inter-

acting domain [62]. Therefore, it may rely on passive repression mechanisms by competing

for binding sites with other bHLH activators.

The developmental basis of seam cell number variability in lin-22

mutants

By using a combination of molecular genetics and time-lapse imaging, we studied the underly-

ing developmental basis of phenotypic variability. We confirmed previous observations that

lin-22 mutants [37, 40], like mutants in related transcription factors in other systems [63],

show extensive ectopic neurogenesis, which in our model correlates with anterior to posterior

lineage transformations. More specifically, V1–V4 cells normally undergoing symmetric cell

divisions at the early L2 stage in the WT divide asymmetrically in lin-22 mutants similar to V5,

with the anterior daughter cell generating a neuroblast. At the same stage, H2 cells often divide

symmetrically in lin-22 mutants in a manner that resembles V1-V4 lineages of WT, giving rise

to daughter cells that do not fuse to the hypodermis and retain seam cell potential. These cell

lineage transformations are stage specific, because at subsequent developmental stages both H

and V cells can divide symmetrically in lin-22 mutants in a pattern that is not seen in WT line-

ages at this stage. Interestingly, both types of developmental errors occur within a single lin-22
mutant animal and even within the very same cell lineage but at different stages, possibly rely-

ing on the availability of other factors that contextualise the lin-22 role. However, these 2

trends show variable expressivity, therefore, which cells generate neuroblasts or show aberrant

symmetric divisions varies stochastically in the population. This developmental tug-of-war

between loss and gain of symmetric divisions in lin-22 mutants results in lineages losing and/

or gaining seam cells, thereby pushing the terminal seam cell number to either side of the pop-

ulation average of 16 cells.
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In particular, we explored the mechanistic basis of the symmetrisation of divisions in lin-22
mutants, which was a previously unknown phenotype. We showed that lin-22 mutants feature

a hyper activation of Wnt pathway in the seam, as is evident from the increased expression of

the downstream target egl-18 in anterior daughter cells, which may act to prevent seam cell

daughter differentiation to hyp7 [19]. We also found an increase in the expression of the Wnt

receptor lin-17, previously known to modulate asymmetric cell divisions [19,52,64], and a Wnt

pathway activity reporter. In the Q neuroblast, the lin-17 receptor itself has been shown to be a

transcriptional target of the Wnt pathway [65]; therefore, it is possible that lin-17 upregulation

in lin-22(icb38) mutants is either a cause or consequence of Wnt pathway activation. The Wnt

pathway acts throughout the nervous system in C. elegans [66] so it is likely that the activation

of Wnt also facilitates the ectopic neurogenesis observed in lin-22 mutants.

Interestingly, the spatial activation of the Wnt pathway was found to be variable in lin-22
mutants, with some seam cells showing strong expression of the Wnt pathway reporter when

adjacent seam cells did not. We propose that this stochasticity in Wnt pathway activation in

lin-22 mutants may drive phenotypic variability. We were able to establish a correlation

between Wnt pathway activation in head seam cells at the L2 stage and the subsequent devel-

opment of head seam cell clusters in the lin-22 mutant background. In the future, with the

advent of improved markers to visualise Wnt singalling, it will be very interesting to follow

cells while they develop and establish direct correlations between Wnt pathway levels and cell

fate. It will also be exciting to explore the underlying mechanisms of cell-to-cell variability in

Wnt pathway activation in the seam via identifying missing Wnt pathway regulators and dis-

secting tissue-specific pathway feedback.

Gene expression changes in the seam and link to variability

Previous studies in seam cell development have largely relied on reporter constructs that pro-

vide qualitative information. In our study, we have used smFISH for the first time in the

seam to demonstrate that lin-22 is specifically expressed in H0–H2 and V1–V4 cells, with a

clear boundary between V4 and V5 that is consistent with its anterior developmental role.

However, we observed that the full lin-22 promoter fusion drives expression in all seam cells

including the posterior V and T cells. This may be due to posttranscriptional regulation

absent in the promoter construct; for example, some miRNA regulation as previously

described for related bHLH factors in mice [67] or simply due to the multicopy nature of

transgenesis in C. elegans. This highlights the importance of studying the endogenous

mRNA expression in comparison to transcriptional reporter transgenes. The lin-22 expres-

sion pattern also suggests that other developmental factors should act locally in V6 and T

cells to inhibit neurogenesis [40].

Furthermore, we found lin-22 expression to be dynamic during seam cell development,

showing initially equal expression in both daughter cells post asymmetric division. This is dif-

ferent to the expression of egl-18 and elt-1, both found to be enriched at the posterior seam-

fated cell postdivision [18]. Interestingly, the expression of certain Hes genes oscillates in many

cell types and Hes genes regulate the timing of critical biological events such as somite segmen-

tation or the timing of neuronal differentiation [38,68]. A key aspect for Hes1 expression oscil-

lation is its rapid degradation and negative feedback from HES1 protein [69,70], with the latter

being a feature in lin-22 regulation as well. Such negative autoregulation is thought to provide

stability to gene networks [71] and may be important to constrain lin-22 expression variability.

To better understand gene expression dynamics and expression pattern periodicity in the

seam, it would be intriguing in the future to explore a possible connection with the heterochro-

nic gene pathway [20,72].
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The expression pattern changes we describe in lin-22 mutants support lineage-specific loss

and gain of daughter cell fate symmetry at the molecular level occurring within single animals.

A striking example is the H2.p daughter cells in lin-22 mutants, which shift from an asymmet-

ric towards a symmetric elt-1 and egl-18 expression pattern, while the adjacent V1–V4 cells

show the opposite trend. Interestingly, the gene expression changes we describe in lin-22 null

mutants are also subject to stochasticity, displaying cell-to-cell variability within a single ani-

mal. A key question is to identify how gene expression variability might relate to phenotypic

variability [73, 74]. By comparing the frequency of gene expression defects and the frequency

of aberrant cell linages, it appears once more that stochasticity in downstream Wnt signaling is

likely to contribute to cell fate changes. For example, the increase in egl-18 expression in H2.pa

daughters is observed at a comparable frequency to the adoption of seam cell fate for these

anterior daughters. On the other hand, expression in H2.pa of the upstream gene elt-1 is

increased more frequently than the observed cell fate symmetrisation, which may reflect a

higher threshold for downstream Wnt pathway activation. Therefore, the smFISH results

together with the Wnt reporter analysis suggest that stochasticity in Wnt pathway activation

among seam cells in lin-22 mutant animals may be an important component of the observed

phenotypic variability (Fig 7C).

Studying developmental variability in a systemic way

Over the last years, C. elegans has been used as a system to quantify the limits of developmental

robustness to environmental variation and other perturbations [75–77]. There are several rea-

sons why we decided to pursue genetic screens in the seam. First, different tissues might show

different levels of sensitivity to perturbations. Seam cell number is sensitive to stochastic noise;

therefore, we reasoned that the increased flexibility of seam-cell patterning would facilitate our

efforts to identify mutations increasing trait variance [78]. Another key reason is that pheno-

typing in the seam is based on fluorescent markers, thus, it is amenable to high-throughput

approaches including fluorescence-based animal sorting.

It is possible that regulators buffering seam cell number variability act cell autonomously

within the seam or influence seam cell behaviour from a distance. Therefore, it will be interest-

ing to explore systemic defects in mutants we recover from our screen. Despite some mild

defects in the intestine, lin-22 mutants have a normal brood size and in general there is no

other tissue in which we could detect an increase in phenotypic variability as strikingly as in

the seam. Consistent with this, seam cell defects in lin-22 mutants were shown to be lateral

side-autonomous. Therefore, it is unlikely that variability in the mutant is determined at the

organismal level or comes as a side effect of loss of animal fitness. Remarkably, we found that

although seam cell number is more variable in lin-22 mutants, P3.p division frequency

becomes less stochastic with almost all animals showing dividing P3.p cells that do not fuse to

hypodermis at the L2 stage. Interestingly, Wnt pathway activation has been previously shown

to result in almost 100% P3.p division frequency [79]. Therefore, consistent hyper activation of

the Wnt pathway in P3.p in lin-22 mutants or higher sensitivity, or some independent posteri-

sation towards a P4.p fate, which always divides in WT, may explain the effect on P3.p division

frequency. Nevertheless, this highlights that a single mutation may lead to either more variable

or more deterministic events in different cell lineages (Fig 7C).

It remains a great challenge to dissect all mechanisms of phenotypic variability in multicel-

lular systems and develop a developmental framework towards interpreting such phenotypes.

Recent evidence suggests that multiple developmental decisions including stem cell patterning

are governed by chance to some degree and buffering mechanisms are needed to operate at the

cell or tissue level [80]. We anticipate that by cloning a broad spectrum of mutants derived
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from our screen and dissecting the underlying mechanisms we will increase our understanding

on the genes modulating variance and their relationship to core developmental networks.

Materials and methods

Nematode culture and genetics

The strains used in this study were cultured and handled according to standard protocols [81].

The JR667 strain containing the scm::GFP transgene (wIs51) is used as a reference on standard

NGM plates with OP50 as a food source. A complete list of strains used in this study is pre-

sented in S1 Table.

Genetic screen and mapping

EMS mutagenesis was performed according to standard procedures [81]. We screened 30,000

haploid genomes to recover seam cell number mutants. Briefly, nematodes were mutagenised

in 4 ml total volume of M9 supplemented with 50 mM EMS (Sigma Aldrich, St. Louis, MO)

with occasional rotation, then washed 10 times and plated for 1 hour to recover. F2 animals

with extreme seam cell counts were selected either using a worm sorter at a speed of 10 animals

per second (Union Biometrica, Holliston, MA) or manually under a stereomicroscope (Axio

Zoom; Zeiss, Oberkochen, Germany) using CO2 and the following set up to immobilise ani-

mals: a 150 ml conical flask contained in a Styrofoam box was filled with 50–100 ml of absolute

ethanol, and a 5 mm diameter rubber tube was fitted on a petri dish lid and the other end was

connected to the flask. Dry ice was added until the temperature of the ethanol equilibrated and

a constant flow of gas CO2 was achieved. Whole genome sequencing was performed using var-

ious Illumina platforms at 20- to 30-fold genome coverage and mapping was performed using

the Cloudmap pipeline on Galaxy [82]. lin-22(icb38) was backcrossed 4 times before pheno-

typic characterization. The ot269 mutation is a C to T change at −4,940 from lin-22 ATG

(TTTTATCTTGATTTACGTGT). The icb49 and icb50 alleles are deletions of a single (ATT

GAATCCG-TGGTGGAATCTC) or 5 nucleotides (ATTGAAT- - - - -GGTGGAATCTC) within

the first exon of lin-22. The ot267 is a G to A change within the third exon (TCCAAATGGGA

AAAAGCT). The icb49, icb50 alleles lead to early stop codons, so we refer to them as putative

null. The icb49 lin-22 allele was also recovered in CB4856 through independent injections of the

same sgRNA targeting lin-22 in N2.

Microscopy and phenotypic characterisation

For light and fluorescence microscopy, animals were mounted on 3% agar pads in M9 contain-

ing 100 μM sodium azide (NaN3), covered with a coverslip and viewed under an epifluores-

cence Ti-eclipse (Nikon, Minato, Tokyo, Japan) microscope. Seam cell and PDE neuron

numbers were scored at the early adult stage using 1 lateral side per animal. Lineaging analysis

was performed by synchronising animals containing both the scm::GFP and dat-1::GFP mark-

ers by egg laying over a period of 1 hour and observing them at different time points using epi-

fluorescence microscopy. Time-lapse microscopy was performed as previously described [44].

For the POPHHOP selection experiment (S5F Fig), lin-22(icb38) mutants carrying the POPH-

HOP reporter and a red seam cell marker were synchronised by bleaching. Individual L2

animals were mounted on 5% agarose pads, anesthetized by using 10 mM muscimol and clas-

sified based on presence or absence of nuclear GFP signal in H cells, while keeping track of

the lateral side by using the rectum as a reference. Animals were then grown individually

and scored at the early adult stage for seam cell number and presence of H seam cell clusters.
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Single molecule fluorescent in situ hybridization

Synchronised nematode populations were produced by bleaching. Animals were fixed at the

appropriate stage as directly monitored by microscopy and smFISH was performed as previ-

ously described [76] using a pool of 25–48 oligos fluorescently labelled with Quasar 670 (Bio-

search Technologies, Novato, CA). Imaging was performed using a motorized epifluoresence

Ti-eclipse microscope (Nikon) and a DU-934 CCD-17291 camera (Andor Technology, Belfast,

United Kingdom) acquiring 0.8 um step z-stacks. Image analysis and spot quantification were

performed on raw data using a MATLAB (MathWorks, Natick, MA) routine as previously

described [76]. For the images presented in the results section of this study, the probe signal

channel was inverted for clarity (black spots correspond to mRNAs) and merged to the seam

cell or DAPI fluorescence channel using ImageJ (NIH, Rockville, MD). A complete list of

smFISH oligo probes is presented in S2 Table.

RNA-seq analysis

Larvae were synchronized by bleaching and grown to L3 stage (31 hr posthatching) before

total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA) reagent. RNA quality

was determined using the Agilent RNA ScreenType System on a 2100 Bioanalyzer (Agilent,

Santa Clara, CA). The library preparation was done using the TruSeq stranded mRNA

library preparation kit (Illumina, San Diego, CA). The sequencing data were processed and

aligned to C. elegans reference genome using Bowtie2 [83]. The bam files were used to gener-

ate counts using bedtools [84]. The counts were then normalised using DESeq package in R

[85]. Differences in gene expression were then calculated using the negative binomial test in

the DESeq package (FDR = 0.1). RNA-seq data are deposited in the NCBI GEO under acces-

sion GSE101645.

Genome editing

To edit the lin-22 coding region, the co-CRISPR strategy was used [86]. An sgRNA targeting

the following sequence (ACTGAAATTGAATCCGATGG) in the first exon of lin-22 was

cloned into pU6::unc-119_sgRNA vector by replacing the unc-119 sgRNA as previously

described [87]. The injection mix contained peft3::cas9 at 50 ng/μl, pU6::dpy-10_sgRNA at 25

ng/μl, pU6::lin-22_sgRNA at 25 ng/μl, repair oligo template for dpy-10 at 10 pmol/μl, and

myo2::dsRed at 5 ng/μl. F1 animals showing morphological phenotypes indicative of modifica-

tions at the dpy-10 locus were examined for presence of multiple PDE neurons. PCR was per-

formed on the F2 animals by using primers lin22-23F/lin22-22R, and the amplified fragment

was sequenced to find the nature of the induced mutation.

Cloning

To construct the lin-22 promoter GFP reporters, the following cloning strategy was used. For

the full promoter (plin-22::gfp), a 5199 bp sequence upstream of the lin-22 ATG was amplified

by using the oligos lin22-1F and lin22-2Rfusion from fosmid WRM0627dG07. For the proxi-

mal promoter (plin-22(proximal)::gfp), a 2,180 bp sequence upstream of the lin-22 ATG was

amplified by using the oligos lin22-3F and lin22-2Rfusion from the same fosmid. Both ampli-

cons were fused by PCR to GFP::H2B::unc-54 30 UTR amplified previously from a suitable

plasmid using oligos GFP-F and unc54-R. Both constructs were injected into N2 animals at 10

ng/ul with myo-2::dsRed as co-injection marker. For the distal lin-22 promoter (plin-22(dis-
tal)::gfp), the distal 3040 bp lin-22 promoter, deleted in lin-22(icb38), was amplified from the

same lin-22 containing fosmid using the primers lin22-17F and lin22-18R carrying restriction
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sites for StuI and NheI respectively. The amplicon was cloned in the L3135 vector (Addgene,

Cambridge, MA) as a StuI/NheI fragment creating pDK1.

To create the CR1 deletion (plin-22(distal CR1 del)::gfp) reporter, pDK1 was used as tem-

plate to amplify 2 distinct fragments of the distal promoter, excluding the CR1 using primer

pairs lin22-17F/ lin-22 _fus_CR1delR and lin-22_fus_CR1delF/lin22-18R. The 2 amplicons

were fused by PCR and inserted into L3135. To create CR1 sufficient (CR1::gfp) GFP reporter,

CR1 was amplified from pDK1 by using primers lin-22_CR1REF and lin-22_CR1RER carry-

ing compatible restriction sites and the amplicon was cloned in L3135. All 3 reporters were

injected into N2 animals at 10 ng/μl with myo-2::dsRed as co-injection marker.

To construct a vector to allow seam cell transgene expression, we used the last intron of arf-
3 (arf-3i) that is contained within the original pMF1 plasmid and is sufficient for seam cell

expression. arf-3i and unc-54 were amplified from previously made plasmids using primer

pairs arf-3-EcorI/pes-10-R-Fusion and unc-54-F-Fusion/ unc-54-HIII respectively. The 2

amplicons carried a fusion overlap, including a 23 bp sequence tag containing SwaI and PmeI

restriction sites, and were fused by PCR. The resulting amplicon was cloned into pUC57 as an

EcoRI/HindIII fragment producing pIR5. To express lin-17 in the seam, lin-17 was amplified

from N2 cDNA using primers lin-17a3-p10 F and lin-17u54R, which carried compatible

sequences and allowed insertion of the amplicon in a SwaI digested pIR5 via Gibson assembly.

The resulting plasmid pDK5[pseam::lin-17::unc-54 3’ UTR] was injected at 30 ng/μl with myo-
2::dsRed as co-injection marker.

All constructs used in this study were verified by sequencing and at least 2 independent

transgenic lines were obtained and compared. A list of all oligos used in this study is presented

in S3 Table.

RNAi

Animals were fed with dsRNA expressing bacteria as a food source. Bacteria were grown over-

night and then seeded directly onto NGM plates containing 1 μM IPTG, 25 μg/ml ampicillin

and 6.25 μg/ml tetracycline. To construct a lin-22 RNAi feeding vector, lin-22 was amplified

using the TOPO cloning compatible lin22-15F primer and lin22-14R from the fosmid

WRM0627dG07 (Source Bioscience, Nottingham, United Kingdom). The amplicon was

inserted by TOPO cloning in pDONR/D-TOPO vector, creating the entry vector pENTR lin-
22. The pENTR lin-22 plasmid was used to insert lin-22 in a gateway compatible L4440 vector

via an LR reaction. To construct a vrp-1 RNAi feeding vector, vrp-1 was amplified from N2

genomic DNA using primers Y54G2A.3a F1 and Y54G2A.3a R1, first cloned in a pDNR/

D-TOPO vector (Invitrogen, Carlsbad, CA) and then inserted into a gateway compatible

L4440 vector. Both feeding vectors were transformed into Escherichia coli HT115 to be used

for nematode feeding. The elt-1 RNAi feeding vector is pAW565 as described in [17]. All other

clones used in this study are commercially available from Source Bioscience.

Supporting information

S1 Text. Sequence file showing the lin-22(icb38) deletion and the position of CR1 and CR2

elements. CR1, conserved region 1; CR2, conserved region 2.

(DOCX)

S1 Data. List of genes differentially expressed in lin-22 mutants.

(XLSX)

S2 Data. Numerical data that are used in figures.

(XLSX)
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S1 Table. List of strains used in this study.

(XLSX)

S2 Table. List of smFISH probes used in this study.

(XLSX)

S3 Table. List of oligos used in this study.

(XLSX)

S1 Fig. Mapping variable mutations (related to Fig 1). (A) Down-regulation of Hsp90/daf-21
leads to marginal seam cell number variability in the seam (n� 40). Red star depicts change in

variance with a Levene’s median test (� P< 0.05). Error bar shows mean ± SD. (B) Graph

showing the selected recombinant lines with CB4856 based on quantitative phenotyping of

seam cell number standard deviation (SD), percentage of animals with extreme seam cell

counts, and percentage of animals with 16 seam cells. Each circle represents 1 line. The paren-

tal vsc1 mutant strain is depicted in red (SD = 1.9) and the wild-type JR667 in blue (SD = 0.3).

(C) Mapping the causative mutation in vsc1 by whole genome sequencing of recombinant

lines with CB4856. Graphs show the ratio of mapping strain (CB4856) alleles to the total num-

ber of reads for 2 different chromosomes. Arrow points to the left arm on chromosome IV

that lacks mapping strain polymorphisms. Another chromosome (III) is shown for compari-

son. Numerical data used for S1 Fig A, B can be found in S2 Data.

(TIF)

S2 Fig. The icb38 mutation represents a new allele of lin-22 (related to Fig 2). (A-B) PDE

neuron number (A) and seam cell number (B) comparison between wild-type animals

(n = 43) and lin-22 mutants (n = 43). (C-D) Phenotypic comparison between lin-22 RNAi

treated animals (n = 30) and control (empty vector) treatment (n = 29). RNAi-treated animals

show multiple PDE neurons (C) and seam cell number variance (D). (E-F) Phenotypic com-

parison between vrp-1 RNAi treated animals (n = 35) and control (n = 40). No defect was

found with regard to number of PDE neurons (E) or seam cell number (F). (G) Quantification

of seam cell number in lin-22(icb38) mutants based on the bro-1CNE::GFP marker (n� 32).

(H-I) Phenotypic characterisation of lin-22(icb49) in the CB4856 background, showing multi-

ple PDE neurons (n� 31) (H) and seam cell number variance (n� 30) (I). (J) Quantification

of seam cell number in males carrying the lin-22(icb-38) mutation (n = 31). Note that terminal

seam cell number in wild-type males is 18 per lateral side. (K) Heatmap illustrating the rela-

tionship between seam cell number counts on 1 lateral side and those on the other lateral side

in wild-type and lin-22(icb38) animals. The majority of animals show 16 seam cells on both

sides in wild-type and moderate correlation of errors (R = 0.37). In lin-22(icb-38) mutants,

there is even less correlation between the seam cell number deviations on one side and the

other (R = 0.23). Black stars show statistically significant changes in the mean with a t test or

one-way ANOVA and Dunnett’s test; red stars depict changes in variance with a Levene’s

median test as follows: ��� P< 0.001, ���� P< 0.0001. For PDE scorings, error bars show

mean ± SEM and for seam cell number counts error bars show mean ± SD. Numerical data

used for S2 Fig A, B, C, D, E, F, G, H, I, J, K can be found in S2 Data. GFP, green fluorescent

protein; PDE, post-deirid; SCM, seam cell marker; CNE, conserved non-coding element;

RNAi, RNA interference.

(TIF)

S3 Fig. lin-22 promoter conservation and lin-22 expression analysis (related to Fig 3). (A)

Vista analysis (70% identity and 100 base-sliding window) depicting 2 regions (CR1 and

CR2) in lin-22 promoters that are conserved between the following Caenorhabditis species:
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C. elegans, C. briggsae, C. remanei, and C. angaria. The position of these elements is shown

with the C. elegans lin-22 promoter as a reference. Note that CR1 overlaps with Y54G2A.67

that is annotated on Wormbase as a putative noncoding RNA. Part of the CR1 sequence with 2

putative GATA sites and the position of the icb38 and ot269 mutations are also shown. (B) lin-
22 smFISH in late L1 wild-type and lin-22(icb38) animals. In wild-type lin-22, spots were

observed in anterior seam cells and not posterior (dashed line marks the seam cell boundary).

(C) Quantification of lin-22 spots in the 4 V1-V4 daughter cells early (n� 11) and late

(n� 22) after the asymmetric division. (D) lin-22 smFISH in wild-type and lin-22(icb38) L4

animals. Note expression in intestinal cells in the mutant (arrows). Nuclei DAPI staining is

shown in magenta. (E) Quantification of lin-22 spots in pooled posterior V1–V4 daughter cells

at the L2 asymmetric division stage in wild-type animals treated with control bacteria (n = 93),

and elt-1 (n�57) or egl-18 RNAi (n = 90). Black stars show statistically significant changes in

the mean with one-way ANOVA and Dunnett’s test as follows: ��� P< 0.001, ���� P< 0.0001.

Scale bar in B, D is 10 μm and black spots correspond to mRNAs. Error bars in C, E show

mean ± SEM. Numerical data used for S3 Fig C, E can be found in S2 Data. CR1, conserved

region 1; CR2, conserved region 2; L1, first larval stage; L2, second larval stage; L4, fourth larval

stage; smFISH, single molecule fluorescent in situ hybridization.

(TIF)

S4 Fig. Postembryonic seam cell lineage analysis in lin-22 mutants (related to Fig 4). (A)

Heat map illustrating the increase (in blue) or decrease (in red) in cell number output per cell

lineage (H0–V6) compared to the wild-type. Each line is an independent lateral side of one ani-

mal, while white colour indicates a wild-type cell number output. Note the presence of lineages

producing extra and fewer cells within the same lateral side. (B) Seven representative postem-

bryonic lineages of H0–V6 seam cells from lin-22(icb38) animals. Solid black lines indicate

seam cell fate, gray lines indicate daughters that differentiate into hypodermal cells, and blue

dots depict lineages that give rise to PDE neurons. Errors in the lineages that result in terminal

seam cell number reduction derive from loss of the L2 symmetric division of V1–V4 cells and

adoption of a V5-like pattern (highlighted in red boxes). Hybrid lineages where ectopic neuro-

genesis co-occurs with seam cell fate maintenance (thus do not change seam cell number) are

shown in yellow boxes. Errors that increase the terminal seam cell number, such as V1–V4

symmetric divisions at the L3/L4 stage or H2 symmetric divisions at the L2 stage, are shown in

blue and green boxes, respectively. Errors that do not change the terminal seam cell number,

such as V cell polarity defects mostly at the L4, V1–V4 cells skipping an asymmetric division,

or V1–V4 cells showing an extra asymmetric division are highlighted in gray. Note that timing

of divisions is not generally affected to suggest broad developmental timing defects. However,

within single lineages we observed a rare manifestation at the L3 stage of a repeat of the L2

pattern of V1–V4 symmetric division followed by an asymmetric division (see lineage right

underneath panel A). Asterisks depict lineages that show errors that both decrease and increase

the total seam cell number for that lineage. Numerical data used for S4 Fig A can be found in

S2 Data. L2, second larval stage; L3, third larval stage; L4, fourth larval stage; PDE, post-deirid.

(TIF)

S5 Fig. Gene expression changes associated with gain and loss of cell fate symmetry in lin-
22 mutants (related to Figs 5 and 6). (A) Quantification of mab-5 expression by smFISH.

Note that posterior V(1–4).pp cells express mab-5 at similar levels to that of wild-type V5.

Error bars show mean ± SEM. (B) Quantification of the frequency of symmetrization of elt-1
expression in the H2 daughters (n = 13) and loss of expression in anterior V cell daughters

(n� 30) in lin-22(icb38) mutants assessed by smFISH. (C) Quantification of the frequency of

detection of mab-5 expression in posterior daughters of the H2 (n = 10) and V1–V4 (n� 20)
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cells in lin-22(icb38) mutants assessed by smFISH. (D) Representative smFISH image of lin-22
(icb38) mutants using an elt-1 or mab-5 probe during the symmetric division of L2 stage and

an egl-18 probe at the asymmetric L2 stage. Arrowheads mark the pattern changes described in

this work. Note cell-to-cell variability as V3 in these particular images does not show the

described pattern change while adjacent cells do. (E) Quantification of cases in which the V.

paa daughter cell in lin-22(icb-38) mutants expresses egl-18 (assessed by smFISH) outside the

WT range. Red box marks such cases, grey depicts expression within the WT range, and white

when expression was nondetermined due to lack of expression data for this cell. Lines corre-

spond to different animals. Note cell-to-cell variability in the vast majority of animals. (F)

Fluorescent images of the wild-type and lin-22(icb38) head region with seam cells marked by

scm::GFP. Note the presence of H cell clusters in lin-22(icb38) mutants in which H cells appear

to be in duplicates (arrowheads). (G) The occurrence of the above phenotype was scored in

early adult animals selected for presence (“positive”; n = 17) or absence (“negative”; n = 15) of

POPHHOP marker expression in the head during the L2 stage. A random population (n = 38)

was also scored in parallel for the phenotype of interest. Note the significant increase in the fre-

quency of the phenotype in animals selected for the presence of POPHHOP signal (positive)

in comparison to both the negative and random populations. (H) lin-17 smFISH images at

the L3 stage showing the entire anterior-posterior axis of a wild-type (same with Fig 6D) and

lin-22(icb38) mutant animal. Black stars show statistically significant changes with a Fisher’s

test: � P< 0.05, �� P< 0.01. Scale bar in D, F, H is 10 μm, and black spots in D, H correspond

to mRNAs. Black bars in B, C, G show frequency ± standard error of the proportion. Numeri-

cal data used for S5 Fig A, B, C, G, E can be found in S2 Data. L2, second larval stage; POPH-

HOP, POP-1 and HMG-helper optimal promoter; smFISH, single molecule fluorescent in situ

hybridization.

(TIF)

S6 Fig. Gene expression analysis in lin-22 mutants (related to Figs 5 and 6 and S1 Data).

(A) Heat map showing the expression of the top 50 upregulated genes that are statistically sig-

nificant at FDR-adjusted P-value of< 0.1 in lin-22(icb38) mutants. (B) Heat map showing the

expression of selected genes. Changes in ceh-16, lin-14, nhr-25, egl-18 in lin-22(icb38), and lin-
22(ot269) are statistically significant. In both panels, the color of each cell in the heat map indi-

cates the difference in the mean expression level in lin-22 mutants relative to the wild-type

JR667 strain as per the color key.

(TIF)

S7 Fig. Developmental defects in other tissues in lin-22 mutants (related to Fig 7). (A)

Quantification of the average number of induced vulval cells in wild-type and lin-22(icb38)
animals at the early L3 stage (as inferred by scoring at the L4 stage, n = 50). (B) Quantification

of the number of π cells in wild-type (n = 29) and lin-22(icb38) (n = 34) animals at the L3 stage.

(C) Quantification of the number of intestinal nuclei in wild-type and lin-22(icb38) animals at

the early L1 stage (n = 39). Black stars show statistically significant changes in the mean with a

t test as follows: �� P< 0.01. Error bars show mean ± SD. Numerical data used for S7 Fig A, B,

C can be found in S2 Data. L1, first larval stage; L3, third larval stage; L4, fourth larval stage.

(TIF)
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