892 research outputs found

    Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality

    Full text link
    The Fourier transform is often used to connect the Lorentzian energy distribution for resonance scattering to the exponential time dependence for decaying states. However, to apply the Fourier transform, one has to bend the rules of standard quantum mechanics; the Lorentzian energy distribution must be extended to the full real axis <E<-\infty<E<\infty instead of being bounded from below 0E<0\leq E <\infty (``Fermi's approximation''). Then the Fourier transform of the extended Lorentzian becomes the exponential, but only for times t0t\geq 0, a time asymmetry which is in conflict with the unitary group time evolution of standard quantum mechanics. Extending the Fourier transform from distributions to generalized vectors, we are led to Gamow kets, which possess a Lorentzian energy distribution with <E<-\infty<E<\infty and have exponential time evolution for tt0=0t\geq t_0 =0 only. This leads to probability predictions that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.

    The European DISABKIDS project: development of seven condition-specific modules to measure health related quality of life in children and adolescents

    Get PDF
    BACKGROUND: The European DISABKIDS project aims to enhance the Health Related Quality of Life (HRQoL) of children and adolescents with chronic medical conditions and their families. We describe the development of the seven cross-nationally tested condition-specific modules of the European DISABKIDS HRQoL instrument in a population of children and adolescents. The condition-specific modules are intended for use in conjunction with the DISABKIDS chronic generic module. METHODS: Focus groups were used to construct the pilot version of the DISABKIDS condition-specific HRQoL modules for asthma, juvenile idiopathic arthritis, atopic dermatitis, cerebral palsy, cystic fibrosis, diabetes and epilepsy. Analyses were conducted on pilot test data in order to construct field test versions of the modules. A series of factor analyses were run, first, to determine potential structures for each condition-specific module, and, secondly, to select a reduced number of items from the pilot test to be included in the field test. Post-field test analyses were conducted to retest the domain structure for the final DISABKIDS condition-specific modules. RESULTS: The DISABKIDS condition-specific modules were tested in a pilot study of 360 respondents, and subsequently in a field test of 1152 respondents in 7 European countries. The final condition-specific modules consist of an 'Impact' domain and an additional domain (e.g. worry, stigma, treatment) with between 10 to 12 items in total. The Cronbach's alpha of the final domains was found to vary from 0.71 to 0.90. CONCLUSION: The condition-specific modules of the DISABKIDS instrument were developed through a step-by-step process including cognitive interview, clinical expertise, factor analysis, correlations and internal consistency. A cross-national pilot and field test were necessary to collect these data. In general, the internal consistency of the domains was satisfactory to high. In future, the DISABKIDS instrument may serve as a useful tool with which to assess HRQoL in children and adolescents with a chronic condition. The condition-specific modules can be used in conjunction with the DISABKIDS chronic generic module

    The Characterization of Helicobacter pylori DNA Associated with Ancient Human Remains Recovered from a Canadian Glacier

    Get PDF
    Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world's population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwäday Dän Ts'ìnchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual's time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwäday Dän Ts'ìnchi individual and the ancestors who arrived in the New World thousands of years ago

    A multi-model study of the hemispheric transport and deposition of oxidised nitrogen.

    Get PDF
    Fifteen chemistry-transport models are used to quantify, for the first time, the export of oxidised nitrogen (NOy) to and from four regions (Europe, North America, South Asia, and East Asia), and to estimate the uncertainty in the results. Between 12 and 24% of the NOx emitted is exported from each region annually. The strongest impact of each source region on a foreign region is: Europe on East Asia, North America on Europe, South Asia on East Asia, and East Asia on North America. Europe exports the most NOy, and East Asia the least. East Asia receives the most NOy from the other regions. Between 8 and 15% of NOx emitted in each region is transported over distances larger than 1000 km, with 3–10% ultimately deposited over the foreign regions

    Helicobacter Genotyping and Detection in Peroperative Lavage Fluid in Patients with Perforated Peptic Ulcer

    Get PDF
    Introduction and Objectives Certain Helicobacter pylori genotypes are associated with peptic ulcer disease; however, little is known about associations between the H. pylori genotype and perforated peptic ulcer (PPU). The primary aim of this study was to evaluate which genotypes are present in patients with PPU and which genotype is dominant in this population. The secondary aim was to study the possibility of determining the H. pylori status in a way other than by biopsy. Materials and Methods Serum samples, gastric tissue biopsies, lavage fluid, and fluid from the nasogastric tube were collec

    Nematic liquid crystal alignment on chemical patterns

    Get PDF
    Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 ¹m homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p

    A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease

    Get PDF
    Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed > 200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (> 18,000) and non-coding (> 15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10−48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease

    Structure and dynamics of single-isoform recombinant Neuronal Human Tubulin

    Get PDF
    Microtubules are polymers that cycle stochastically between polymerization and depolymerization i.e., they exhibit 'dynamic instability'. This behavior is crucial for cell division, motility and differentiation. While studies in the last decade have made fundamental breakthroughs in our understanding of how cellular effectors modulate microtubule dynamics, analysis of the relationship between tubulin sequence, structure and dynamics has been held back by a lack of dynamics measurements with and structural characterization of homogenous, isotypically pure, engineered tubulin. Here we report for the first time the cryo-EM structure and in vitro dynamics parameters of recombinant isotypically pure human tubulin. α1A/βIII is a purely neuronal tubulin isoform. The 4.2 Å structure of unmodified human α1A/βIII microtubules shows overall similarity to that of heterogeneous brain microtubules, but is distinguished by subtle differences at polymerization interfaces, which are hotspots for sequence divergence between tubulin isoforms. In vitro dynamics assays show that, like mosaic brain microtubules, recombinant homogenous microtubules undergo dynamic instability but they polymerize slower and catastrophe less frequently. Interestingly, we find that epitaxial growth of α1A/βIII microtubules from heterogeneous brain seeds is inefficient, but can be fully rescued by incorporating as little as 5% of brain tubulin into the homogenous α1A/βIII lattice. Our study establishes a system to examine the structure and dynamics of mammalian microtubules with well-defined tubulin species and is a first and necessary step towards uncovering how tubulin genetic and chemical diversity is exploited to modulate intrinsic microtubule dynamics
    corecore