19 research outputs found

    Reductive Metabolism of AGE Precursors: A Metabolic Route for Preventing AGE Accumulation in Cardiovascular Tissue

    Get PDF
    OBJECTIVE—To examine the role of aldo-keto reductases (AKRs) in the cardiovascular metabolism of the precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS—Steady-state kinetic parameters of AKRs with AGE precursors were determined using recombinant proteins expressed in bacteria. Metabolism of meth-ylglyoxal and AGE accumulation were studied in human umbil-ical vein endothelial cells (HUVECs) and C57 wild-type, akr1b3 (aldose reductase)-null, cardiospecific-akr1b4 (rat aldose reduc-tase), and akr1b8 (FR-1)-transgenic mice. AGE accumulation and atherosclerotic lesions were studied 12 weeks after streptozoto-cin treatment of C57, akr1b3-null, and apoE- and akr1b3-apoE– null mice. RESULTS—Higher levels of AGEs were generated in the cytosol than at the external surface of HUVECs cultured in high glucose

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    Paroxysmal Cerebral Disorder

    Pediatric Anterior Cruciate Ligament Femoral Fixation: The Trans-Iliotibial Band Endoscopic Portal for Direct Visualization of Ideal Button Placement

    No full text
    Pediatric and adolescent anterior cruciate ligament reconstruction is a commonly performed procedure that has been increasing in incidence. Multiple techniques for graft fixation have been described. Button-based femoral cortical suspension fixation of the anterior cruciate ligament graft allows for fast, secure fixation with strong load-to-failure biomechanical properties. The biomechanical properties of button-based femoral cortical suspension fixation are especially beneficial with soft-tissue grafts such as hamstring autografts. Confirmation of a successfully flipped button can be achieved with intraoperative fluoroscopy or indirect viewing; however, these techniques do not provide direct visualization of the flipped button. Our trans-iliotibial band endoscopic portal allows the surgeon to safely and directly visualize the flipped button on the lateral femoral cortex and ensure that there is no malpositioning in the form of an incompletely flipped button or from soft-tissue interposition between the button and the lateral femoral cortex. This portal therefore allows for direct visual confirmation that the button is fully flipped and resting flush against the femoral cortex, deep to the iliotibial band and vastus lateralis
    corecore