31 research outputs found

    Pressures to perform : An interview study of Australian highperformance school-age athletes-perceptions of balancing their school and sporting lives

    Get PDF
    High performance school-age athletes struggle to balance the demands of their sporting and educational roles. They are like “hyphenated” individuals striving to deal with more than one life. This investigation examines the views of talented athletes who are full-time school students to elicit their perspectives of how they deal with the pressures to perform in these two different arenas. Previous published research on this topic has not included athletes’ views or “given voice” to school-age high performance athletes’ perceptions of how they balance two full-time lives. This study incorporated a cross-sectional design using qualitative techniques in an interpretivist paradigm. Data collection was through interviews using Livescribe™ pen. NVivo 9.2™ was used to analyse interviews from nine current and 10 former school-age high performance athletes (n = 19) across a range of sports. Findings were categorised into five themes: physical, social, educational, psychological and economic issues. In particular participants in this study identified specific problems they experienced with physical and social issues of: tiredness, nutritional awareness, procrastination, and personal sacrifices. All participants indicated they wanted to pursue both their education and sport, reinforcing the Elementtheoretical construct that doing both connects their sense of identity, purpose and well-being. Implications for policy and practice in schools and in sports are discussed with a view to identifying the characteristics that define an ‘athlete friendly school’. Research findings from this study also provide suggestions about how these young athletes, their parents, and teachers can optimise the dual-demands and pressures on these athletes’ lives

    Using nvivo™ for literature reviews: The eight step pedagogy (N7+1)

    Get PDF
    While a literature review is a necessary milestone to be completed by all researchers in a timely and efficient manner, it is often one of the most difficult aspects of the research journey. Moreover, traditional approaches often leave novice researchers, to struggle with the conceptualisation of their literature review, now complicated by the overwhelming quantity of research available online. This paper presents a rationale the use of Qualitative Data Analysis Software (QDAS) programs for literature reviews. QDAS tools allow the researcher to explore large amounts of textual documents to see patterns. These programs are often overlooked by novice researchers due to their complexity and the lack of expertise provided to assist them. To combat this dilemma our paper outlines the N7+1 approach to using Nvivo11™ for literature reviews. Through this approach researchers can develop an “auditable footprint,” keep everything in one place, and go paperless

    Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the I interferon

    Get PDF
    To overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity. Notably, Nrf2 activation promoted mitochondrial fusion. The Keap1 inhibitor, 4-octyl itaconate remodeled the inflammatory macrophage proteome, increasing redox and suppressing type I interferon (IFN) response. Similarly, pharmacologic or genetic Nrf2 activation inhibited the transcription of IFN-β and its downstream effector IFIT2 during LPS stimulation. These data suggest that Nrf2 activation facilitates metabolic reprogramming and mitochondrial adaptation, and finetunes the innate immune response in macrophages

    Macrophage fumarate hydratase restrains mtRNA-mediated interferon production

    Get PDF
    Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses

    Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.

    Get PDF
    The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons

    Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements

    Get PDF
    The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    The Nvivo Toolkit: How to apply Nvivo in your PhD for research and publishing success

    No full text
    Successful research using qualitative data relies on the rigour and thoroughness of the data analysis methods; and, consequently, this manual focuses on how qualitative data can be rigorously analysed. Key to the qualitative analysis process is diminishing any doubt surrounding the reliability and validity of qualitatively produced findings, and formulating a serious method of data analysis (Miles and Huberman, 1994). This Toolkit describes in detail how the data analysis of a higher degree study was conducted, using NVivo qualitative data analysis software. By applying the detailed guidelines set out in the Toolkit to your own research, you will be able to clearly demonstrate rigour in your data analysis to a level required in a higher degree study
    corecore