421 research outputs found

    What Determines NFL Ticket Prices?

    Get PDF
    This paper studies the demand-side factors that determine NFL teams’ ticket prices from 2009 to 2012 using a panel model. Our model specifies NFL teams’ average ticket prices as a function of GDP per capita, number of competing professional sports teams, stadium renovation within the last two years, the average winning percentage from the previous three seasons, and Pro Bowl players each team had from the previous year. We find that a team’s winning percentage and having a stadium renovation has the largest impact on average ticket prices. We also find that the number of Pro Bowl players is an insignificant determinant of NFL teams’ ticket prices

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Short Gamma Ray Bursts: marking the birth of black holes from coalescing compact binaries

    Full text link
    This contribution summarizes, as of early 2008, the observational and theoretical understanding of the origin, physics, and emission properties of short gamma-ray bursts in both electromagnetic and gravitational waves.Comment: 19 pages, appeared in the book "Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence", Astrophysics and Space Science Library, edited by M. Colpi, P. Casella, V. Gorini, U. Moschella, and A. Possent

    Meaning between, in, and around words, gestures and postures: multimodal meaning making in children's classroom communication

    Get PDF
    The view of language from a social semiotic perspective is clear. Language is one of many semiotic resources we employ in our communicative practices. That is to say that while language is at times dominant, it always operates within a multimodal frame and furthermore, at times modes other than language are dominant. The proposed 2014 National Curriculum for the UK, on the other hand, values pupils' face-to-face classroom interaction in terms of standard spoken English (i.e. in terms of the mode of language alone). This paper offers examples demonstrating how embodied modes such as gesture, posture, facial expression, gaze and haptics work in conjunction with speech in children's collaborative construction of knowledge. In other words, what may have been previously conceived as gaps and silences - often interpreted as an absence of language - are in fact instantiations of the work of semiotic modes other than language. In order to consider this closely, this paper offers evidence from a multimodal micro-analysis of pupil-to-pupil, face-to-face interaction in one science lesson in a Year Five UK Primary classroom. It demonstrates how children's meaning-making is achieved through apt use of all available semiotic resources

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    The radio spectral energy distribution of infrared-faint radio sources

    Get PDF
    This document is the Accepted Manuscript of the following article: A, Herzog, et al, 'The radio spectral energy distribution of infrared-faint radio sources', Astronomy & Astrophysics, A130 (2016), DOI: 10.1051/0004-6361/201527000. © ESO 2016. Published by EDP Sciences.Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep, but we also find ultra-steep SEDs. In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least 18% of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 solar masses per year.Peer reviewedFinal Accepted Versio

    Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

    Full text link
    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce X-ray emission but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray (0.1-10 GeV) emission from the recently-detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary, and that particles can be accelerated effectively to produce pi0 decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.Comment: 38 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, A.B. Hill, P. Jean, S. Razzaque, K.S. Woo

    Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi gamma-ray Observations of the Third Galactic Quadrant

    Full text link
    We report an analysis of the interstellar γ\gamma-ray emission in the third Galactic quadrant measured by the {Fermi} Large Area Telescope. The window encompassing the Galactic plane from longitude 210\arcdeg to 250\arcdeg has kinematically well-defined segments of the Local and the Perseus arms, suitable to study the cosmic-ray densities across the outer Galaxy. We measure no large gradient with Galactocentric distance of the γ\gamma-ray emissivities per interstellar H atom over the regions sampled in this study. The gradient depends, however, on the optical depth correction applied to derive the \HI\ column densities. No significant variations are found in the interstellar spectra in the outer Galaxy, indicating similar shapes of the cosmic-ray spectrum up to the Perseus arm for particles with GeV to tens of GeV energies. The emissivity as a function of Galactocentric radius does not show a large enhancement in the spiral arms with respect to the interarm region. The measured emissivity gradient is flatter than expectations based on a cosmic-ray propagation model using the radial distribution of supernova remnants and uniform diffusion properties. In this context, observations require a larger halo size and/or a flatter CR source distribution than usually assumed. The molecular mass calibrating ratio, XCO=N(H2)/WCOX_{\rm CO} = N({\rm H_{2}})/W_{\rm CO}, is found to be (2.08±0.11)×1020cm2(Kkms1)1(2.08 \pm 0.11) \times 10^{20} {\rm cm^{-2} (K km s^{-1})^{-1}} in the Local-arm clouds and is not significantly sensitive to the choice of \HI\ spin temperature. No significant variations are found for clouds in the interarm region.Comment: Corresponding authors: I. A. Grenier ([email protected]); T. Mizuno ([email protected]); L. Tibaldo ([email protected]) accepted for publication in Ap

    Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B

    Get PDF
    We present an analysis of the gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a significance of 38 sigma is found to coincide with SNR W49B. The energy spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy range. There is no indication that the gamma-ray emission comes from a pulsar. Assuming that the SNR shell is the site of gamma-ray production, the observed spectrum can be explained either by the decay of neutral pi mesons produced through the proton-proton collisions or by electron bremsstrahlung. The calculated energy density of relativistic particles responsible for the LAT flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either gamma-ray production mechanism.Comment: 9 pages, 10 figure
    corecore