121 research outputs found

    An evaluation of the utility of routine laboratory monitoring of juvenile idiopathic arthritis (JIA) patients using non-steroidal anti-inflammatory drugs (NSAIDs): a retrospective review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus evidence-based guidelines for the routine laboratory monitoring of children with JIA receiving non-steroidal anti-inflammatory drugs (NSAIDs) exist. The purpose of this study is to evaluate the clinical utility of routine laboratory monitoring of hemoglobin, transaminases, blood urea nitrogen, serum creatinine, and urinalysis in patients with juvenile idiopathic arthritis (JIA) receiving NSAIDs.</p> <p>Methods</p> <p>The medical records of 91 children with JIA followed between 1996 and 2006 were retrospectively reviewed for laboratory results and clinically significant adverse effects attributed to NSAID use. Laboratory abnormalities were documented, with potential adverse clinical sequelae, including if NSAID use was discontinued.</p> <p>Results</p> <p>Abnormal laboratory results were recorded for 24 of 91 patients. Nearly all abnormalities were mild and not associated with adverse clinical sequelae. All patients but one continued to receive NSAID therapy after the abnormality was detected.</p> <p>Conclusions</p> <p>Although detection of abnormal laboratory values occurred while on NSAIDs, these abnormalities did not correlate with adverse clinical signs and symptoms. The routine monitoring of laboratory tests in asymptomatic children treated with NSAIDs is of questionable utility.</p

    Human Antibody Responses to VlsE Antigenic Variation Protein of Borrelia burgdorferi

    Get PDF
    VlsE is a 35-kDa surface-exposed lipoprotein of Borrelia burgdorferi that was shown previously to undergo antigenic variation through segmental recombination of silent vls cassettes with vlsE during experimental mouse infections. Previous data had indicated that sera from North American Lyme disease patients and experimentally infected animals contained antibodies reactive with VlsE. In this study, sera from patients with Lyme disease, syphilis, and autoimmune conditions as well as from healthy controls were examined for reactivity with VlsE by Western blotting and enzyme-linked immunosorbent assay (ELISA). Strong Western blot reactivity to a recombinant VlsE cassette region protein was obtained consistently with Lyme disease sera. Although sera from Lyme disease patients also reacted with a band corresponding to VlsE in B. burgdorferi B31-5A3, interpretation was complicated by low levels of VlsE expression in in vitro-cultured B. burgdorferi and by the presence of comigrating bands. An ELISA using recombinant VlsE was compared with an ELISA using sonically disrupted B. burgdorferi as the antigen. For a total of 93 Lyme disease patient sera examined, the VlsE ELISA yielded sensitivities of 63% for culture-confirmed erythema migrans cases and 92% for later stages, as compared to 61 and 98%, respectively, for the “whole-cell” ELISA. The specificities of the two assays with healthy blood donor sera were comparable, but the VlsE ELISA was 90% specific with sera from syphilis patients, compared to 20% specificity for the whole-cell ELISA with this group. Neither assay showed reactivity with a panel of sera from 20 non-Lyme disease arthritis patients or 20 systemic lupus erythematosus patients. Our results indicate that VlsE may be useful in the immunodiagnosis of Lyme disease and may offer greater specificity than ELISAs using whole B. burgdorferi as the antigen

    Role of aggrecanase 1 in Lyme arthritis

    Full text link
    Objective Arthritis is one of the hallmarks of late-stage Lyme disease. Previous studies have shown that infection with Borrelia burgdorferi , the causative agent of Lyme disease, results in degradation of proteoglycans and collagen in cartilage. B burgdorferi do not appear to produce any exported proteases capable of digesting proteoglycans and collagen, but instead, induce and activate host proteases, such as matrix metalloproteinases (MMPs), which results in cartilage degradation. The role of aggrecanases in Lyme arthritis has not yet been determined. We therefore sought to delineate the contribution of aggrecanases to joint destruction in Lyme arthritis. Methods We examined the expression patterns of aggrecanases 1 and 2 (ADAMTS 4 and 5, respectively) in B burgdorferi –infected primary human chondrocyte cell cultures, in synovial fluid samples from patients with active Lyme arthritis, and in the joints of mice by real-time quantitative reverse transcription–polymerase chain reaction and immunoblotting techniques. Bovine cartilage explants were used to determine the role of aggrecanases in B burgdorferi –induced cartilage degradation. Results ADAMTS-4, but not ADAMTS-5, was induced in human chondrocytes infected with B burgdorferi . The active forms of ADAMTS-4 were increased in synovial fluid samples from patients with active Lyme arthritis and were elevated in the joints of mice infected with B burgdorferi . Using cartilage explant models of Lyme arthritis, it appeared that the cleavage of aggrecan was predominantly mediated by “aggrecanases” rather than MMPs. Conclusion The induction of ADAMTS-4 by B burgdorferi results in the cleavage of aggrecan, which may be an important first step that leads to permanent degradation of cartilage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55825/1/22128_ftp.pd

    Childhood sarcoidosis: A rare but fascinating disorder

    Get PDF
    Childhood sarcoidosis is a rare multisystemic granulomatous disorder of unknown etiology. In the pediatric series reported from the southeastern United States, sarcoidosis had a higher incidence among African Americans. Most reported childhood cases have occurred in patients aged 13–15 years. Macrophages bearing an increased expression of major histocompatibility class (MHC) II molecules most likely initiate the inflammatory response of sarcoidosis by presenting an unidentified antigen to CD4+ Th (helper-inducer) lymphocytes. A persistent, poorly degradable antigen driven cell-mediated immune response leads to a cytokine cascade, to granuloma formation, and eventually to fibrosis. Frequently observed immunologic features include depression of cutaneous delayed-type hypersensitivity and a heightened helper T cell type 1 (Th1) immune response at sites of disease. Circulating immune complexes, along with signs of B cell hyperactivity, may also be found. The clinical presentation can vary greatly depending upon the organs involved and age of the patient. Two distinct forms of sarcoidosis exist in children. Older children usually present with a multisystem disease similar to the adult manifestations, with frequent hilar lymphadenopathy and pulmonary infiltrations. Early-onset sarcoidosis is a unique form of the disease characterized by the triad of rash, uveitis, and arthritis in children presenting before four years of age. The diagnosis of sarcoidosis is confirmed by demonstrating a typical noncaseating granuloma on a biopsy specimen. Other granulmatous diseases should be reasonably excluded. The current therapy of choice for sarcoidosis in children with multisystem involvement is oral corticosteroids. Methotrexate given orally in low doses has been effective, safe and steroid sparing in some patients. Alternative immunosuppressive agents, such as azathioprine, cyclophosphamide, chlorambucil, and cyclosporine, have been tried in adult cases of sarcoidosis with questionable efficacy. The high toxicity profile of these agents, including an increased risk of lymphoproliferative disorders and carcinomas, has limited their use to patients with severe disease refractory to other agents. Successful steroid sparing treatment with mycophenolate mofetil was described in an adolescent with renal-limited sarcoidosis complicated by renal failure. Novel treatment strategies for sarcoidosis have been developed including the use of TNF-alpha inhibitors, such as infliximab. The long-term course and prognosis is not well established in childhood sarcoidosis, but it appears to be poorer in early-onset disease

    Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation

    Get PDF
    The most common motif in uranium chemistry is the d0f0 uranyl ion [UO2]21 in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium–oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si–OUO2UO–Si molecule shows remarkably strong UV–UV coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.JRC.E.6-Actinides researc

    Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion

    Get PDF
    yesUranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, “Pacman” geometry that stabilizes the UV oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg−N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U−O−Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxogroup
    • 

    corecore