203 research outputs found
A Model for Isotropic Crystal Growth from Vapor on a Patterned Substrate
We developed a consistent mathematical model for isotropic crystal growth on
a substrate covered by the mask material with a periodic series of parallel
long trenches where the substrate is exposed to the vapor phase. Surface
diffusion and the flux of particles from vapor are assumed to be the main
mechanisms of growth. A geometrical approach to the motion of crystal surface
in two dimensions is adopted and nonlinear evolution equations are solved by a
finite-difference method. The model allows the direct computation of the
crystal surface shape, as well as the study of the effects due to mask regions
of effectively nonzero thickness. As in experiments, lateral overgrowth of
crystal onto the mask and enhanced growth in the region near the contact of the
crystal and the mask is found, as well as the comparable crystal shapes. The
growth rates in vertical and lateral directions are investigated.Comment: 21 pages; submitted to the Journal of Crystal Growt
Keeping time in the lamina terminalis: Novel oscillator properties of forebrain sensory circumventricular organs
Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single‐cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential‐dependent communication to maintain synchrony. Our results reveal that these thirst‐controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior
Novel diffusion mechanism on the GaAs(001) surface: the role of adatom-dimer interaction
Employing first principles total energy calculations we have studied the
behavior of Ga and Al adatoms on the GaAs(001)-beta2 surface. The adsorption
site and two relevant diffusion channels are identified. The channels are
characterized by different adatom-surface dimer interaction. Both affect in a
novel way the adatom migration: in one channel the diffusing adatom jumps
across the surface dimers and leaves the dimer bonds intact, in the other one
the surface dimer bonds are broken. The two channels are taken into account to
derive effective adatom diffusion barriers. From the diffusion barriers we
conclude a strong diffusion anisotropy for both Al and Ga adatoms with the
direction of fastest diffusion parallel to the surface dimers. In agreement
with experimental observations we find higher diffusion barriers for Al than
for Ga.Comment: 4 pages, 2 figures, Phys. Rev. Lett. 79 (1997). Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Optoelectronic Inactivity of Dislocations in Cu In,Ga Se2 Thin Films
High efficiency Cu In,Ga Se2 CIGS thin film solar cells are based on poly crystalline CIGS absorber layers, which contain grain boundaries, stacking faults, and dislocations. While planar defects in CIGS layers have been investigated extensively, little is still known about the impact of dislocations on optoelectronic properties of CIGS absorbers. Herein, evidence for an optoelectronic inactivity of dislocations in these thin films is given, in contrast to the situation at grain boundaries. This unique behavior is explained by the extensive elemental redis tribution detected around dislocation cores, which is connected with the dislocation strain field, probably leading to a shift of defect states toward the band edge
A Biradical Balancing Act: Redox Amphoterism in a Diindenoanthracene Derivative Results from Quinoidal Acceptor and Aromatic Donor Motifs
The
reduced and oxidized states of an open-shell diindeno[<i>b,i</i>]anthracene (<b>DIAn</b>) derivative have been
investigated by experimental and theoretical techniques. As a result
of moderate biradical character and the ability of cyclopenta-fused
scaffolds to stabilize both positive and negative charges, <b>DIAn</b> exhibits rich redox chemistry with four observable and isolable
charged states. Structural and electronic properties of the <b>DIAn</b> system are brought to light by UV–vis–NIR
and Raman spectroelectrochemical measurements. Aromatization of the
diindeno-fused anthracene core upon successive single-electron injections
is revealed through single-crystal X-ray diffraction of radical anion
and dianion salts. We present a rare case where the pseudoaromatic/quinoidal
ground state of a neutral biradical polycyclic hydrocarbon leads to
a stable cascade of five redox states. Our detailed investigation
of the transformation of molecular structure along all four redox
events provides a clearer understanding of the nature of charge carriers
in ambipolar organic field-effect transistors
Transcriptional Activation of Low-Density Lipoprotein Receptor Gene by DJ-1 and Effect of DJ-1 on Cholesterol Homeostasis
DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene
Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID).
Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3-10μM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100-200μM), mild-moderate hyperhomocysteinemia ([HCy]: 10-100μM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100μM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support HCy as a mediator for VCID. In our view further trials of combined B-vitamin supplementation are called for, incorporating lessons from previous trials and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; and target cohorts with low baseline B-vitamin status. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock
Daily magnesium fluxes regulate cellular timekeeping and energy balance
Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes1, 2, 3. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology4, 5. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg2+]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago6. Given the essential role of Mg2+ as a cofactor for ATP, a functional consequence of [Mg2+]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg2+ availability has potential to impact upon many of the cell’s more than 600 MgATP-dependent enzymes7 and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR8 is regulated through [Mg2+]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease
- …