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Abstract 

Homocysteine is produced physiologically in all cells, and is present in plasma of healthy 

individuals (plasma  [HCy]: 3-10µM). While rare genetic mutations (CBS, MTHFR) cause 

severe hyperhomocysteinemia ( [HCy]: 100-200µM), mild-moderate hyperhomocysteinemia 

( [HCy]: 10-100µM) is common in older people, and is an independent risk factor for stroke 

and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-

validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in 

vascular contributions to cognitive impairment and dementia (VCID).  

Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal 

actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy 

<100 µM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, 

impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-

lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data 

support Hcy as a mediator for VCID. In our view further trails of combined B-vitamin 

supplementation are called for, incorporating lessons from previous trails and from recent 

experimental work. To maximise likelihood of treatment effect, a future trial should: supply a 

high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; target 

cohorts with low baseline B-vitamin status.  
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1. Introduction 

1.1 Homocysteine and vascular contributions to cognitive impairment and dementia (VCID).  

Brain vascular lesions contribute to dementing illness in the form of vascular dementia, 

vascular factors exacerbating Alzheimer’s disease (AD), and other cognitive impairment 

states where diagnostic criteria for dementia are unmet [81,87]. This considerable burden of 

dementia-related illness is covered by the concept of vascular contributions to cognitive 

impairment and dementia (VCID) [35,87,107]. The most common cause of VCID is thought 

to be a common brain vascular pathology called cerebral small vessel disease (SVD) 

[28,82,87,92].  

 

Homocysteine (HCy) is a thiol-containing non-essential amino acid (Table 1) that is produced 

in all cells, as a product of normal folate and methionine metabolism. Elevated plasma 

homocysteine is referred to as hyperhomocysteinemia (HHCy). HHCy is a robust and 

independent risk factor for stroke [44,48,61,97,98] and for cognitive impairment [101,105] 

and is associated with pathologically-confirmed AD [16]. HHCy is associated with an 

increased rate of hippocampal atrophy [16] and with accelerated cognitive decline in AD 

patients [88] and is now accepted as a risk factor for AD [6]. Plasma HCy concentration is 

strongly associated with hippocampal atrophy, white matter lesions and lacunar infarcts in 

cross-sectional studies [32,61,117,123]. The association with hippocampal atrophy appears to 

be independent of amyloid pathology [14]. White matter lesions reflect vascular damage [92] 

and it is therefore notable that white matter changes are associated with HHCy [47,49,64,94] 

and with low vitamin B12 levels [21] and low folate [51,100]. Evidence supporting a causal 

relationship between HHCy and cerebrovascular injury includes: i) independent, graded 

association of HHCy with stroke in prospective and retrospective clinical studies [48,61]; ii)  
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genetic association studies of genes regulating HCy metabolism, using Mendelian 

randomisation [9];  iii) HHCy-induced lesions in experimental animals [4,68,108,111]. 

Dietary supplementation with the appropriate B-vitamins (B6, B12 and folate) clearly 

ameliorates HHCy. Thus HHCy may be a modifiable risk factor in VCID. 

 

1.2 Biochemistry of homocysteine.  

Rare genetic mutations in folate and methionine metabolizing enzymes (CBS, MTHFR) 

produce severe HHCy (plasma HCy in excess of 100 µM; up to ~500 µM). Plasma HCy can 

also be elevated by smoking, aging, deficiency in folate or vitamin B12, or renal failure. 

Clinical mild-moderate HHCy is common, especially in older people. Mild-moderate HHCy 

is various defined, with lower limits ranging from 10-15 µM and upper limits 30-100 µM.  

Plasma HCy is derived from cellular export via cysteine and folate transporters [50,56] and 

circulating HCy levels are maintained at relatively low levels by ongoing enzymatic 

conversion to either methionine or cysteine (see Figure 1). Plasma total HCy concentration in 

healthy individuals is typically in the range 5-10 µmoles/litre (µM). Previous detailed 

reviews are available on HCy biochemistry [52,115]. For the purposes of this review 

(including data from biochemical assays, cell cultures, experimental animals and clinical 

populations) we have defined mild-moderate HHCy by homocysteine concentrations in the 

range 10-100 µM, and severe HHCy as >100 µM. 
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Table 1. Homocysteine and related molecular species 

Molecule Structure Formation 

Homocysteine, HCy 

 

Formed in normal 

cell metabolism of  

folate and  

methionine 

Homocystine  

 

 

 

Disulphide bonded 

dimerization of 

HCy 

Homocysteine 

thiolactone 

(shown as 

hydrochloride) 
  

Condensation of the 

SH and carboxylic 

acid groups of HCy 

Homocysteic acid, 

HCA 

(-SO3H dissociates to 

form homocysteate 

anion, -SO3
-
) 

  

Uncertain, possibly 

oxidation  of HCy 

Abbreviations. HCy, homocysteine. HCA, homocysteic acid. 
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1.3 Homocysteine and cerebral small vessel disease (SVD).  

SVD is a vessel pathology that affects small penetrating arteries (up to 400 µm outer 

diameter) in deep subcortical brain regions, primarily the basal ganglia and deep white matter 

[31,77]. It is characterised neuropathologically by fibrous, hyaline thickening of vessel wall, 

loss of myocytes, and relative preservation of endothelium [40,90]. SVD is common in brains 

of older people, and is a prevalent cause of microinfarcts and lacunes, lacunar stroke, and 

diffuse white matter lesions (“leukoaraiosis”) [87,90,92]. Further, neuroimaging [28,114,116] 

and neuropathology [30,31,104]  data suggest that SVD is also the most common cause of 

VCID[87,90,92]. While increasing age and hypertension are risk factors for SVD, the 

pathogenesis of SVD is not well understood [34,90].  

Multiple studies have shown that mild-moderate HHCy is a risk factor for SVD 

[32,44,45,61,61,62,117,123]. In case-control studies HHCy was positively-associated with 

SVD severity, with highest plasma total HCy concentration (plasma [HCy]; average 20 μM) 

in patients with confluent leukoaraiosis on MRI scans, indicative of more severe SVD 

[44,61]. The association between SVD and HCy was markedly attenuated after controlling 

for circulating markers of endothelial dysfunction, suggesting a possible endothelial 

mechanism for the HHCy-SVD association [44]. 

 

2. Cellular actions of HCy  

Here we review the actions of HCy at the molecular and cellular level with particular 

reference to brain cells, specifically neurones and vascular cells. Several reported actions 

occur at HCy concentrations below 100 µM, within the range of mild-moderate clinical 
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HHCy, thus direct actions of HCy in vivo on neurones, vascular endothelial cells and VSMC 

in vivo appear likely. 

 

2.1 Effects of HCy on brain neurones 

We carried out a systematic review of concentration dependence of the actions of HCy in 

brain cells (results shown in Table 2). We searched PubMed (on 12th June 2015) for articles 

in English containing the terms: (brain OR cerebr*) AND (homocyst*) AND (potency OR 

half-maximal OR IC50 OR EC50 OR ED50 OR affinity). This yielded 109 results. Abstracts 

were viewed by two independent reviewers (NY, AHH) and 41 were discarded by consensus 

(not relevant, no quantitative data, or not primary data source). Of the 68 retained, on viewing 

the full text data were extracted from all where quantitative data were given on the potency of 

homocysteine actions (Table 2) [2,3,25,27,37,38,46,54,75]. Quantitative data were also 

extracted on the actions of HCA (see Supplementary table S1).   

 

Table 2. Effects of HCy on brain neurones and glial cells  

Effects observed 

Effective 

concentration  

Cell or tissue Species Reference 

Neurite loss and size 

reduction 

>100 M 

Mesencephalic 

tegmental neurons  

Rat 

Heider et al. 

(2004) [46] 

Inhibition of neural 

network activity 

400 M 

Embryonic 

neocortical neurons 

Rat 

Gortz et al. 

(2004) [37] 
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Lipid peroxidation 100 - 1000 M Synaptosomes Rat 

Jara-Parado et al. 

(2003)[54] 

Inhibition of 

glutamine uptake  

2 mM 

Cerebral neuronal 

non-synaptic 

mitochondria 

Rat 

Albrecht et al. 

(2000)[2] 

PAG inhibition 2 mM 

Cerebral neuronal 

non-synaptic 

mitochondria 

Rat 

Albrecht et al. 

(2000)[2] 

L-glutamate 

transporter 

inhibition 

1000 M 

Synaptosomes, from 

pre-frontal cortex 

Mouse 

Griffiths et al. 

(1989)[38] 

GABAA receptor 

binding  

Ki(apparent) :  

>10 mM  

Synaptic membranes Cow 

Egubta & 

Griffiths (1987) 

[25] 

Inhibition of high 

affinity GABA 

uptake  

IC50 >5 mM 

Synaptosomes  

[whole brain] 

Rat 

Allen et al. 

(1986) [3] 

Inhibition of high 

affinity taurine 

uptake 

IC50: 2.8 mM 

Synaptosomes  

[whole brain] 

Rat 

Allen et al. 

(1986)[3] 

Inhibition of high 

affinity taurine 

IC50: 4.8 mM 

Astrocytes from 

cerebral cortex 

Rat 

Allen et al. 

(1986)[3] 
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uptake 

Inhibition of MMP-

2 activity 

IC50: 727 M 

Brain tissue 

homogenate 

Pig 

Emara & Cheung 

(2006)[27] 

Inhibition of MMP-

9 activity 

IC50: 2.35 mM 

Brain tissue 

homogenate 

Pig 

Emara & Cheung 

(2006)[27] 

Inhibition of 

kynurenic acid  

production 

IC50: 6.4 mM  Cortical neurons Rat 

Luchowska  et 

al. (2005)[75] 

Abbreviations. MMP, matrix metalloproteinase; PAG, Phosphate-activated glutaminase. 

 

Neurotoxicity and morphological changes. Incubation of mesencephalic tegmental neurons 

from rats with HCy (100M) for 48 hours produced morphological changes in the neurites of 

the tyrosine hydroxylase positive neurons (assumed to be dopaminergic)[46]. Fewer and 

shorter neurites were observed, although there were no significant effects on cell numbers 

[46]. This suggests that HCy exhibits a mild toxicity towards these dopaminergic neurons at 

a concentration of 100M. In vivo injection of HCy into the left ventricle produced dose-

dependent neuronal loss [124], with marked neuronal loss. These effects may be mediated by 

the NMDA and metabotropic glutamate receptors, as co-administration with antagonists of 

these receptors attenuated the neurotoxic effects of HCy [124]. 

Neural network activity suppression. HCY reduced neural network activity in spontaneously 

active embryonic rat cortical neurons (as measured by basal spontaneous spike rate). The IC50 

for HCy (401M) was above the range for severe HHCy, so the authors concluded that these 
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effects were not clinically relevant. Homocysteate, by contrast, had an IC50 of 1.3M. 

Homocysteate is often found to be elevated in patients with HHCy [37] and HCA may be a 

clinically relevant species.  

Lipid peroxidation. HCy (100-1000M) increased lipid peroxidation in rat brain 

synaptosomes in a concentration-dependent manner [54]. This action was prevented by an 

NMDA receptor antagonist [54] supporting a glutamate receptor dependent pathway for 

HCy-mediated neuronal damage.  

 

Several other cellular actions of HCy are reported, with effective concentrations in the 

millimolar range, (Table 2). These are unlikely to be relevant to clinical HHCy. 

Homocysteate and Homocysteic acid. The physiological metabolic pathways of HCA (see 

Table 1 for structure) are relatively little known. There is evidence that HCy may be oxidised 

to form HCA within brain and other tissues [37]. Homocysteate has neurotoxic effects, 

independent of HCy [37,46]. These appear to be due to NMDA and metabotropic glutamate 

receptor-dependent excitotoxicity (see  Supplementary table S1)[26,36,93,96]. HCA is 

clearly more potent than HCy in some cellular actions [37,38,46]. While HCA/homocysteate 

may participate in some of the cytotoxic processes observed in HHCy, native HCA levels 

appear to be low.  

 

2.2 Effects of HCy on vascular cells 

Cell damaging effects of HCy on blood vessels have been suggested for many years. Mild-

moderate HHCy could directly cause cell damage in vivo, or could represent a secondary 
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event or biomarker of a pathological process. The salient cellular actions of HCy at clinically 

relevant concentrations are listed in Table 3 and are discussed below. 

The effects reported at extracellular HCy concentrations below 100 µM suggest that direct 

HCy cytotoxicity may be relevant in vivo. We note with caution that there is little 

information on the clinically relevant range of intracellular HCy concentrations (in 

physiological conditions, approximately 100 µM). Amino acid transporters are present in 

vascular smooth muscle cells and endothelial cells, with high affinity for HCy (KM 40-100 

µM)[56]. 

 

Table 3. HCy effects in vascular cells  

 Effective 

concentration 

Cell type Species References 

In vascular smooth muscle cells 

Increased cell 

proliferation 

50 -100 µM Thoracic aortic 

VSMC 

Chick  Dalton et al. 1997 

[17] 

Increased protein 

kinase C activity 

 

3 -100 µM Thoracic and 

abdominal aorta 

VSMC  

Chick  Dalton et al. 1997 

[17] 

Increased ERK2 

activity 

 

0.1-100 µM, 

EC50 0.5 µM 

Thoracic and 

abdominal aorta 

VSMC  

Chick  Brown et al. 

1998[7] 

Increased CTGF 

release, Collagen I 

50-500 µM Umbilical vein 

VSMC 

Human Liu et al. 

2008[73] Majors 
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and fibronectin 

synthesis 

et al. 1997[76] 

Lysyl oxidase 

inhibition (by HCy 

lactone) 

5 – 50 µM,  Ki 

20 µM  

Whole aorta Calf Liu et al. 1997 

[72] 

In endothelial cells 

Reduced cell 

proliferation 

 

10 – 50 µM,   

EC50 10-20 µM 

HUVEC Human Wang et al. 

1997[119] 

Downregulation of 

cyclin A 

50 µM HUVEC Human Jamaluddin et al. 

2007 [53] 

Inhibition of 

endothelial NOS 

50 – 200 µM Thoracic aorta 

endothelial cells 

Human 

& 

Mouse 

Jiang et al. 

2005[57] 

Inhibition of 

endothelial-

dependent 

vasodilatation 

10 – 100 µM,   

EC50 10 µM 

Coronary artery 

endothelial cells 

Pig Chen et al. 2002 

[11] 

Increased 

superoxide 

formation 

30 -1000 µM Aortic 

endothelial cells 

Pig Lang et al. 2000 

[67] 

Increased release 

of MMP-9, loss of 

Integrin-1 

12 - 40 µM,  

EC50 20 µM 

Cerebral 

microvessel 

endothelial cells 

Mouse Shastry & Tyagi 

2004[103] 

Reduced binding 10 µM Aortic Pig Nishinaga et al. 
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of anti-thrombin 

III 

endothelial cells 1992 [86] 

Other actions 

Increased MCP-1, 

IL-6 release 

 

10 -1000 µM, 

EC50 30 µM 

Aortic adventitial 

fibroblasts  

Rat Liu et al.  

2012[74] 

Cell 

transformation of 

fibroblasts to  

myo-fibroblasts 

10-100 µM Aortic adventitial 

fibroblasts  

Rat Liu et al. 

2012[74] 

Reduced platelet-

fibrinogen binding 

1 - 10 µM Whole blood  Human Riba et al. 

2004[95] 

Reduced ApoA-

fibrin binding  

8 - 2000 µM,  

EC50 ~ 100 µM 

Fresh plasma Human Harpel et al. 1992 

[43] 

Increased MCP-1, 

IL-8 release from 

blood monocytes 

10 -1000 µM,  

EC50 10-30 µM 

Whole blood  Human Zeng et al. 2003 

[125] 

Abbreviations.  ApoA, apolipoprotein-A. CTGF, connective tissue-derived growth factor. 

ERK2, Extracellular signal-regulated kinase. HUVEC, human umbilical vein endothelial 

cells. IL-6, -8, interleukin-6, -8. MCP-1, monocyte chemotactic protein-1. MMP-9, matrix 

metalloproteinase-9. NOS, nitric oxide synthase. VSMC, vascular smooth muscle cells. 
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2.2.1 Vascular smooth muscle cells 

Cell proliferation.  Moderate concentrations of HCy (10-100 μM) enhanced proliferation of 

vascular smooth muscle cells (VSMC) in primary cultures [17,76]. In VSMC cultured from 

embryonic thoracic aorta, acute HCy-induced cell proliferation was associated with induction 

of c-fos and c-myb, and translocation of protein kinase C (PKC) to the plasma membrane 

[17]. In agreement with a PKC-dependent mechanism, HCy concentrations as low as 3 µM 

(range 3-100 µM) stimulated diacylglycerol synthesis in these cells [17].  The growth-related 

MAP kinase ERK2 was also rapidly activated by very low concentrations of HCy (EC50 0.5 

µM) in aortic VSMC cultured from chick embryos [7]. How this action relates to normal 

adult physiology (with ambient plasma HCy well above this concentration) is unclear. 

Mitogenic actions of acute HCy treatment were seen in myocyte cultures derived from aorta 

of adult animals, but only as higher concentrations (500-1000 µM)[112,113]. These agree 

with earlier in vivo studies in nonhuman primates undergoing chronic intravascular infusion 

with  HCy [42]. In these animals steady state plasma HCy of 160 µM produced intimal 

lesions with endothelial cell loss and myointimal cell proliferation, resembling 

arteriosclerosis [42]. The cell proliferative effect of HCy is clearly not a generalized 

response, as HCy suppresses cell proliferation in endothelial cells, (see 2.2.2 below). HCy 

may also influence cell fate. HCy (10-100 µM) treatment of adventitial fibroblasts cultured 

from rat aorta stimulated transformation to myofibroblast-like phenotype (expression of the 

myocyte-associated proteins smooth muscle actin and SM22α) [74]. 

Fibrosis and collagenosis. HCy treatment potently increased collagen synthesis in smooth 

muscle cells in vitro (over a concentration range 50 - 500 µM) [76]. In accord with a pro-

fibrotic action, treatment of human VSMC cultures with a moderate concentration of HCy 

(50 µM) increased expression of the pro-fibrotic growth factor CTGF, collagen type I, and 
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fibronectin [73]. In accord with effects of HCy on vessel fibrosis, HCy lactone (see Table 1)  

irreversibly inhibited lysyl oxidase (Ki 21 µM) [72]. This enzyme catalyses cross-linking 

between elastin and fibrillar collagen, and is essential for growth and repair of connective 

tissue matrices. 

 

2.2.2 Endothelial effects of homocysteine  

Mild-moderate HHCy is associated with endothelial dysfunction in humans [10,44,109], 

experimental primates[71], and rodents [18,24,59,68,108,122].  

Inhibition of cell proliferation. HCy suppresses cell proliferation in endothelial cells, contrary 

to its proliferative action in vascular myocytes. In preparations of human aortic endothelial 

cells (HAEC), pig aortic endothelial cells and HUVEC, tritiated thymidine incorporation was 

inhibited dose-dependently by modest HCy concentrations (10 to 50 µM; 24hr exposure) 

[119]. The half-maximal concentration for L-HCy was approximately 10 µM in these various 

endothelial preparations, with D,L-homocysteine showing roughly 2-fold lower potency, and 

L-cysteine without effect, indicating a specific action of L-HCy [119].  HCy-treated HAEC 

had greatly increased levels of s adenosyl homocysteine (SAH; which is a potent inhibitor of 

methyl transferase enzyme activity) and reduced carboxyl methylation of p21-ras. Inhibition 

of endothelial proliferation has also been reported at higher HCy concentrations (100 to 1000 

µM) [112].  

At these high concentrations, caspase-dependent cell death is seen (500 - 1000 µM) [69].  

This pro-apoptotic action of high HCy concentration was abrogated by the nitric oxide donor 

SNAP, the antioxidant alpha-tocopherol, or by an antioxidant mixture of superoxide 
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dismutase and catalase [69].  High concentrations of HCy (>200 µM) produced endoplasmic 

reticulum (ER) stress in endothelial cell cultures [89]. 

 

Inhibition of endothelial nitric oxide synthase (eNOS). In cultures of aortic endothelial cells 

from adult mice, moderate concentrations of HCy (range 5 - 200 µM) inhibited eNOS 

activity, evidenced by depressed L-citrulline and nitrite formation [57]. This accords with in 

vivo data showing lower eNOS activity in Cbs null mice relative to wildtype mice, and 

intermediate eNOS activity in Cbs
+/-

 heterozygotes [57]. Similarly, in coronary artery rings 

from adult pigs application of HCy (10 - 100 µM) reduced endothelium-dependent 

vasodilation [11].  Endothelium-independent vasodilation (in response to the NO donor 

nitroprusside) was unaffected, supporting an endothelial action for HCy. Downregulation of 

eNOS expression was also seen in human aortic endothelial cells but only at higher HCy 

concentration (200 µM)[57]. By way of caution, the endothelial preparations in most of these 

studies came from large arteries, and may not entirely reflect microvascular signalling. 

Gene induction effects. Screening for gene induction in endothelial cells following HCy 

exposure revealed several candidates, [65,102]. In microvascular endothelial cells derived 

from mouse brain, treatment with moderate concentrations of HCy (up to 40 μM, 24 hours) 

increased activity of the matrix metalloproteinase MMP-9 concentration-dependently, while 

growth factor synthesis decreased (VEGF, FGFα, leptin) [103]. Over the same HCy 

concentration range, shedding of β1 integrin from the endothelial cell surface was also 

seen[103]. Such effects in intact blood vessels could undermine the extracellular matrix 

integrity in the intimal layers around endothelial cells, and contribute to the anti-proliferative 

effects of HCy in endothelial cells. 
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2.2.3 Homocysteine actions on blood components 

Acute exposure to physiological concentrations of HCy (less than 10 µM) increased the 

affinity and degree of specific binding for fibrin to Lp(a), a complex that includes 

Apolipoprotein-A and shares structural homology with plasminogen [43]. HCy increased 

binding by plasmin-modified fibrin (20 fold) and by native fibrin (4 fold). This may be a 

thiol-dependent action as other small thiol compounds (cysteine, GSH) had a similar effect, 

whereas sulphur containing compounds that lack the free -SH group including methionine 

and SAH had no effect. Low HCy (10 µM) also greatly reduced binding of anti-thrombin III 

to endothelial cells derived from porcine aorta [86]. 

The pro-coagulant effect of modest levels of HHCy was evident in patients with peripheral 

occlusive arterial disease (diagnosed as intermittent claudication). In isolated platelets taken 

from patients with higher plasma HCy (average 19 µM) the inhibitory effect of a nitric oxide 

donor (GSNO, 1 µM) on platelet-fibrinogen binding was 5-fold lower than that of subjects 

with normal HCy (average 11 µM)[95]. In HUVEC cultures, binding of tissue plasminogen 

activator (tPA) to the cell surface was inhibited by high concentrations of HCy (up to 1.5 

mM) [41]. 

 

3. Experimental animal models relevant to elevated homocysteine  

Induction of HHCy in an animal model can be achieved via genetic manipulation or diet.  

Here we outline animal models that have shown HHCy, sufficient to cause cognitive deficits 

and vascular adverse events in the brain. Here we discuss transgenic mouse strains with 

mutations in the genes that underlie severe HHCy in humans (CBS, MTHFR), and animals 
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with diet-induced HHCy. Further information on animal models is given in previous reviews 

[19,58,110]. 

3.1 Cystathionine beta synthase (CBS) converts HCy to cystathionine, which is then 

converted to cysteine, during normal biochemical processing. In humans, deficiencies in CBS 

result in severe HHCy and increased risk of thrombosis, and are the most common cause of 

hereditary HHCy. While homozygous Cbs knockout mice [121] have a neonatal lethal 

phenotype,  inducible Tg-hCBS mice avoid this problem [39]. In Tg-hCBS mice, human CBS 

is under the control of a zinc-inducible promoter. During pregnancy and lactation drinking 

water is supplemented with Zn
2+

 to rescue the neonatal lethal phenotype[120]. At weaning, 

the zinc supplementation is withdrawn and the progeny develop HHCy (plasma HCy 170 

µM, relative to 5 µM in control animals). Another CBS transgenic model reproduces the 

I278T mutation, which is the second most common allele found in CBS-deficient 

patients[66]. Tg-I278T Cbs
-/-

 mice have less than 3% wildtype CBS activity and develop 

HHCy (plasma HCy 290 µM). Tg-I278T Cbs
-/-

 mice also exhibit facial alopecia, osteoporosis, 

ER stress in the liver and kidney, and reduced mean survival, Tg-hCBS mice do not show any 

of these phenotypic changes. Although thrombosis is the most common symptom of CBS 

deficiencies in humans, neither mouse model exhibits any thrombotic or vascular defects.  

Cbs
+/-

 heterozygous mice have a 50% lower CBS activity compared to wildtype mice, and 

develop mild HHCy on normal diet (plasma HCy 6-8 µM) [4,59,121], augmented by high 

methionine diet for 8-20 weeks (plasma HCy ~20 µM)[4].  Cbs
+/-

 heterozygote mice exhibit 

substantial vascular dysfunction. They have thickened arteries, including cerebral arteries, 

with evidence of endothelial damage [4,59]. Cerebral arteriolar walls are 25% thicker in 

Cbs
+/-

 heterozygote mice, relative to WT controls [4]. This was accompanied by mild 

hypertension and blood-brain barrier dysfunction [4]. This vasomotor dysfunction is 

primarily based on endothelial dysfunction, and is largely attributed to redox imbalance and 
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decreased bioavailability of NO. Compared to Cbs
 
null mice, Cbs

+/-
 mice display a milder 

HHCy and may be a more useful model to study hyperhomocysteinemic effects on the 

vasculature.  

3.2 Methylenetetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in conversion 

of HCy to methionine. In humans, several MTHFR polymorphisms produce HHCy and 

neurological conditions, including progressive demyelinating neuropathy and cognitive 

impairment. MTHFR knockout mice [13] exhibit elevated plasma HCy . Similar to the Cbs 

mouse model, MTHFR
+/-

 heterozygotes exhibit mild HHCy (plasma HCy ~20 μM, relative to 

3-5 μM in wildtype littermates)[80] and appear outwardly healthy, while MTHFR
-/-

 

homozygotes (plasma HCy 31-33 µM, relative to 3 µM in WT animals) survive poorly and 

present with motor and gait abnormalities within 5 weeks after birth. MTHFR
+/-

 mice exhibit 

some loss of function in cerebral vessels [85] and high intramural collagen in peripheral 

arteries [85]. MTHFR
-/-

 homozygotes also present with abnormal lipid deposition in the aorta 

and disruption of the laminar structure of the cerebellum (though with no obvious changes in 

the cerebral cortex or cerebrum).  

3.3 Dietary induction of HHCy in mice and rats can be achieved through either a reduction in 

vitamins B6, B9 and B12, or by diets supplemented with HCy  or methionine 

[4,18,68,108,111]. Vascular dysfunction has been reported in primates (Cynomolgus 

monkeys) following diet-induced mild-moderate HHCy (plasma HCy 11 µM, relative to 4 

µM on normal diet) [70,71].  (Earlier studies in baboons employed direct infusion of HCy 

[42]). Responses of resistance vessels to endothelium-dependent vasodilators were markedly 

impaired in HHCy monkeys, and anticoagulant thrombomodulin activity in the aorta 

decreased by 34 % [71].   
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Vitamins B6, B9 and B12 act as essential cofactors for the conversion of HCy to methionine 

or cysteine, combined with enrichment in dietary methionine, causes an increase in 

conversion to HCy.  In 6-month-old rats fed a folate-deficient diet for 8 weeks, increased 

plasma HCy (increased from 6 µM to 19 µM) was accompanied by ultrastructural changes to 

cerebral capillaries, endothelial damage, swelling of pericytes, basement membrane 

thickening and fibrosis [63].  Rats fed a diet high in HCy for 5 or 15 months (plasma HCy 26 

µM at both time-points, relative to 10 µM in controls) both showed cognitive impairments, 

decreased acetylcholine in the brain and cortical micro-hemorrhages[91]. In wild-type mice 

fed a B-vitamin deficient diet, cognitive deficits resulted from relatively-brief (10 week) diet-

derived mild HHCy (plasma HCy 35 µM, relative to 5 µM on normal diet) [111]. The authors 

found a decline in spatial learning (water maze task) accompanied by rarefaction of 

hippocampal blood vessels and of microglia [111]. Aged Tg2576 mice on HCy-elevating diet 

(plasma HCy 27 µM, relative to 5 µM in controls) also showed deficits in spatial reference 

memory, but not working memory tasks (delayed non-match to position)[5].  

Plasma HCy levels were also increased in 3-month-old mice that were fed a diet deficient in 

vitamins B6, B9 and B12 and also enriched in methionine for 3 months [108]. These mice 

exhibited cognitive impairments on the two-day radial arm water maze, cerebral 

microhemorrhages and increased MMP2 and MMP9 activity. This dietary model results in 

plasma HCy in the range 70-90 µM [108]. While these concentrations are higher than most 

human subjects classified under mild-moderate HHCy, this level is classified as moderate 

HHCy in mice [29]. 

 

4. Overview of clinical interventional trials relevant to stroke and dementia  
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If the hypothesis that HHCy causes cognitive decline is correct, then lowering plasma HCy 

concentrations (e.g. by B vitamin supplementation) should slow cognitive decline and 

possibly prevent dementia. Multiple clinical trials have tested B vitamin administration (folic 

acid, vitamins B6 and B12) with a cognitive endpoint. There have been three meta-analyses of 

these intervention trials [15,33,118].  

 

4.1 Meta-analyses of clinical trials.  

Three meta-analyses [15,33,118] will be considered here, with respect to the following 

important features related to trial design [78].  

i) The hypothesis being tested. If the hypothesis is that treatment slows cognitive 

decline, then the placebo group must exhibit cognitive decline. Unless the placebo 

group declines, the trial can only show whether the treatment enhances or worsens 

cognition. 

ii) Age range of the test cohort. If cognitive decline is the outcome, the age of the 

subjects should be in the range where cognitive decline occurs.  

iii) Trial duration. Is this sufficient to observe cognitive decline? In cognitively healthy 

elderly people, MMSE declines by only about 0.1 points per year on average. 

iv) The instrument used to assess a treatment effect. Is the instrument sensitive enough to 

detect change over the period of the trial? The instrument may display ceiling or floor 

effects, which limit the detectable effect size. Points (ii), (iii) and (iv) will together 

dictate whether the trial has sufficient power to detect a real effect.  

v) Is the intervention appropriate? For B vitamins, the daily doses should be sufficient to 

lower plasma HCy by at least 20%. 

vi) Is the group likely to respond to intervention? A B-vitamin supplement will produce 

no effect if the participants already have adequate B vitamin status. Such trials should 
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be limited either to subjects with high plasma HCy or insufficient B vitamin function. 

Alternatively, subgroup analyses should be performed to stratify for baseline values of 

B vitamins and plasma HCy.  

 

The majority of the 26 trials analysed in the three meta-analyses [15,33,118]  did not fulfil 

these requirements. Furthermore, by combining data from different trials (e.g. by using 

standardised mean differences) the meta-analyses have neutralised some of these 

requirements, even though they were fulfilled in individual trials. These three meta-analyses 

[15,33,118]  have recently been appraised by others [78] and are outlined below. 

 

In one analysis 7 of the 9 trials were of short duration (≤ 12 months; the two shortest lasted 1 

month) with an overall median duration of 6 months [118]. In the trial with the largest 

number of participants (n=910), which accordingly was given a strong weighting, the doses 

of folic acid (0.2 mg) and vitamin B12 (1 µg) were too low to influence plasma HCy. In a 

trial where the doses of vitamins were adequate [79], there was no significant cognitive 

decline in the placebo group (mean MMSE 29.17 at baseline, 29.32 after 2 y). Thus, the 

conclusion that folic acid has no effect on the prevention of age-related cognitive decline 

[118] may be false. The authors concluded that longer trials of folate supplementation are 

needed, with larger cohorts and with cognitive decline and dementia as outcomes [118]. 

 

A larger meta-analysis combined 19 trials (n= 5,398 participants) [33]  of which 8 were in the 

previous analysis [118]. In this analysis, only 6 of the trials (n=785 participants) were 

performed on subjects with cognitive impairment and the results were reported separately for 

this group and for participants without cognitive impairment. This study concluded “It 

remains to be established whether chronic treatment with B-vitamins is associated with better 
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cognitive outcomes, or if their use could reduce the risk of dementia in later life” [33].  This 

meta-analysis also suffered from lack of statistical power to detect differences associated with 

small effect sizes (<0.2) between the supplemented and placebo groups. Another limitation is 

that the analysis combined data from 62 different cognitive tests, by converting the individual 

test scores to standard deviation scores, in order to compute standardised mean differences. 

Thus, there was considerable clinical heterogeneity in the combined data. In order to analyse 

the data, the authors assumed zero correlation between the assessments at baseline and study 

endpoint. This may be a serious limitation, as baseline cognitive test performance is a well-

known predictor of later test performance. Thus, in any analysis of cognitive decline it is 

imperative to use a model that controls for the baseline value (which is not possible with the 

widely-used standardised mean difference method). A further limitation of this method is that 

it depends upon the t test and so the analysis cannot be adjusted for important co-variates 

(e.g. gender and education) that are known to influence cognitive change.  

 

A third meta-analysis[15] aimed to test the effect of lowering plasma HCy on ‘cognitive 

ageing’ (though this was not defined). The analysis considered 11 trials (n=22,000) of which 

5 had been included in one or both of the previous two studies, and concluded “B-vitamin 

supplementation caused HCy-lowering but was without significant effect on cognitive 

function or cognitive aging”[15]. Trials on subjects with a prior diagnosis of cognitive 

impairment or dementia were specifically excluded[15]. Furthermore, in most subjects in the 

included trials, cognitive decline could not be measured since baseline global cognitive 

measures were not available for 76% of subjects. It is therefore unclear what can be 

concluded from such trials, apart from a lack of a cognitive enhancing (or a harmful) effect of 

B vitamins.  
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4.2 The FACIT and WAFACS trials 

 

Two of the trials (n=2,825) that were included in the above meta-analyses did report 

cognitive scores at baseline. Both these trials showed significant effects of B vitamins on 

cognitive change in those subjects with high plasma HCy [23], or with poor B vitamin status 

[60]. The FACIT trial (n=818; mean age 60 y) recruited people from the Netherlands with 

plasma HCy was between 13 and 26 µM, but with adequate vitamin B12 status[23]. Folic 

acid (0.8 mg/day) was administered for 3 y. At the end of the trial plasma HCy concentration 

was 26% lower than in the placebo group. The trial assessed several cognitive domains and 

found that performance on sensorimotor speed, information processing speed, and complex 

speed had all declined in the placebo group after 3 y but that the decline was slowed by folic 

acid treatment. There was an improvement in memory performance in the placebo group 

(likely due to learning effect) but a greater degree of improvement occurred in the folic acid 

group. Global cognitive performance also improved more in the folic acid group. Notably, 

there was a larger beneficial effect of folic acid on information processing speed in those 

whose base-line plasma HCy was above the median than in those below the median. The 

authors estimated that folic acid treatment conferred cognitive performance of someone 4.7 y 

younger for memory, 1.7 y younger for sensorimotor speed, 2.1 y younger for information 

processing speed, and 1.5 y younger for global cognitive function. Overall, this trial was 

consistent with the view that lowering plasma HCy slows decline in those cognitive domains 

that are sensitive to ageing[23]. 

 

In the US-based WAFACS trial (n=5442, all female, age >40y) a daily combination of B 

vitamins (2.5 mg folate, 50 mg B6, 1 mg B12) was tested for secondary prevention of 

cardiovascular disease [60]. Cognitive testing was carried out in a substudy (n=2009, 
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age>65y). While cognitive change from baseline did not differ between the vitamin-treated 

and placebo groups in the cohort as a whole, there was a significant protective effect in those 

participants with low baseline dietary intake of folate [60]. 

 

4.3 The VITACOG trial  

 

VITACOG was designed to test whether lowering plasma HCy would slow the accelerated 

rate of brain atrophy that occurs in people with MCI [106]. Volunteers (n = 168) with MCI 

were randomized to placebo or a daily combination of folic acid (0.8 mg), vitamin B12 (0.5 

mg) and vitamin B6 (20 mg) for two years. Volumetric MRI scans were performed at the 

start and end of the trial. B vitamin treatment led to a highly significant slowing in the rate of 

global brain atrophy (average 30%). The effect of B vitamin treatment depended on baseline 

plasma HCy, with a 53% slowing of atrophy in those in the top quartile (> 13 µM)[106]. 

 

A further analysis of the MRI scans from VITACOG subjects revealed strong effects of B 

vitamin treatment on regional brain atrophy in MCI [22]. There was 7-fold less regional brain 

atrophy in the B vitamin group compared with the placebo group, though this effect was 

significant only in people with plasma HCy above the median. The gray matter regions 

protected by B vitamin treatment included: structures of the medial temporal lobe, the 

precuneus, angular gyrus and supramarginal gyrus, all regions known to be vulnerable to the 

AD disease process. It was concluded that the B vitamin treatment had slowed the atrophy of 

AD-related regions of the brain, in people with raised plasma HCy [22]. 

 

VITACOG was not powered to detect any effect of homocysteine-lowering on cognition. 

Nevertheless, a pre-specified analysis stratifying for plasma HCy showed that in people with 



28 
 

baseline plasma HCy above the median (11.3 µM), cognitive decline was virtually prevented 

in the following domains: episodic memory, semantic memory and global cognition (MMSE) 

[20].  

 

4.4 Importance of initial homocysteine concentration.  

The VITACOG trial implies a threshold effect of plasma HCy on biological outcomes such as 

brain atrophy and cognition. Slowing of brain atrophy and of cognitive decline occurred only 

in people with plasma HCy > 11 µM, while improvement in clinical measures was only 

found with plasma HCy > 13 µM. These findings are consistent with previous observations. 

For example, there is a concentration-related (> 10 µM) association of plasma HCy with 

incidence of dementia. In the OPTIMA study, only concentrations above 11 µM were 

associated with an increased rate of atrophy of the medial temporal lobe[16]. At 

concentrations  > 10 µM there was a concentration-dependent increase in the rate of cognitive 

decline in AD patients under 75 y [88]. If the threshold for effects of plasma HCy is about 

10-11 µM that could explain why some studies, for example in countries that already employ 

mandatory folic acid fortification, do not find associations of plasma HCy with cognitive or 

brain outcomes. Thus, an 18-month trial of high-dose B vitamins in patients with AD in the 

USA (baseline plasma HCy 9.16 µM) did not find an overall effect of treatment on cognitive 

decline[1]. It should be noted that those patients with mild AD did show a protective effect of 

B vitamins after 15 months, which may indicate that timing of HCy-lowering intervention is 

critical. 

 

4.5 Interactions with other risk factors.  

Retrospective analysis of the VITACOG data revealed an interaction with omega-3 fatty 

acids. It emerged that the protective effect of B vitamin treatment on both brain atrophy and 
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cognitive decline in MCI only occurred in those participants with a good status of long-chain 

omega-3 fatty acids [55]. We also observed that the beneficial effect of B vitamins on brain 

atrophy was absent in subjects taking aspirin [106]. These results emphasize the importance 

of considering risk factor interactions. This may be a reason why some trials of B vitamins 

have failed, if the treated population were taking aspirin regularly, as in many trials included 

in the meta-analysis by Clarke et al.[15], or had a poor omega-3 fatty acid status. Further 

trials are needed to test B vitamins in combination with omega-3 fatty acids, in people not 

taking regular aspirin. 

 

4.6 Future trials of B vitamin supplementation for HHCy lowering 

In our view further trails of combined B vitamin supplementation are called for. These should 

incorporate the lessons from previous trails, and from recent experimental work. In order to 

maximise likelihood of treatment effect, future trials should aim to target individuals who are 

in the at-risk age range, but not demented. Cohorts with inadequate baseline B vitamin status 

should be targeted, and a full combination supplement (B6, B12 and folate) supplied at high 

dose. With the benefit of extant trial data, accurate power analyses should be possible, to 

allow conservative design in terms of sufficient cohort size and treatment duration.  

 

A possible scenario could be a government-sponsored scheme within areas of social 

deprivation, where long-term vitamin inadequacy is prevalent. Participants would be 

randomised to a highly-flavoured tablet formulation, such as a vitamin C preparation, without 

B vitamins (placebo) or with a substantial dose of B6/B12/folate (treatment). Recruitment 

would be offered to all older persons in a public setting. Recruitment, registration and supply 

would be at a routine public forum, such as weekly pension collection, or GP drop-in clinics 

for cardiovascular monitoring. 
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For a future trial in VCID, suitable endpoints may be MRI-derived measures of disease 

progression [99]. Such surrogate biomarkers may be of utility in trials for VCID for two main 

reasons. First, a large proportion of individuals who exhibit VCID and VCID biomarkers will 

not convert to dementia. Second, MRI-based endpoints will permit a test of efficacy in a 

smaller cohort than would be required to detect a difference in cognitive decline.   

 

4.7 Preclinical studies lowering Hcy levels.  

While no animal studies have been done to lower Hcy levels and test cognition or 

neuropathology, some animal studies have been done with the aim of studying cardiovascular 

effects of Hcy lowering. One study used the CBS-/- genetic model, induced 

hypercholesterolemia, and then targeted CBS expression using a viral vector to restore low 

Hcy levels. Using this approach, the investigators found that the restoration of low Hcy levels 

improved infarct healing and attenuated remodelling after a myocardial infarction [83]. The 

same group used the same genetic approach in a model of pressure overload-induced 

cardiomyopathy and found that Hcy lowering reduced mortality and lowered oxidative stress 

[84]. A few studies have examined the effects of various B-vitamins, the most common being 

folic acid, on learning and memory, however, these studies did not examine homocysteine 

levels [8,12]. 

 

5. Conclusions 

The molecular targets of HCy that are relevant to VCID are not fully defined. While 

numerous biochemical and cellular actions have been reported, on inspection most resulted 

from HCy concentrations above the clinically relevant range of 10-100 µM. Reported actions 
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of HCy below 100 µM were primarily vascular. These included: PKC activation and 

proliferation of vascular myocytes; vessel wall fibrosis and collagenosis; reduced 

proliferation and suppression of nitric oxide signalling in endothelial cells; heightened 

superoxide formation, and release of inflammatory mediators (MCP-1, IL-6, IL-8, MMP9); 

various pro-coagulant actions on different blood components (fibrinogen, ApoA, 

antithrombin-III). Mouse models of HHcy and the extensive body of epidemiology data 

indicate a strong relationship between HHcy and cognition. Further, it is clear from the 

mouse studies that HHcy can influence AD pathology, a further consideration for clinical 

studies. Future studies are clearly required to fully characterize and identify the key 

molecular pathways linking Hcy to VCID.  

 

At least 19 clinical trials relevant to VCID have tested HCy-lowering interventions. Many  

were compromised by the challenges of performing a cognitive clinical trial (trial duration, 

statistical power, cohort age, B vitamin status). Three trials supported a beneficial effect 

(FACIT, WAFACS, VITACOG). The question as to whether or not lowering plasma HCy 

slows cognitive decline requires further well-designed trials. The extensive clinical and 

preclinical data strongly support Hcy as a key mediator for VCID. The challenge is now to 

design clinical studies that fully address this link. Preclinical animal model studies will be 

essential for the identification of the appropriate time-points when Hcy effects can be 

manipulated and reversed.  
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Figure Legend 

Figure 1. Biochemical Pathways linking homocysteine and B vitamins. 

Methionine is converted to homocysteine by methylation and subsequent hydrolysis. 

Homocysteine is then either cycled back to methionine via the folate cycle, catalysed by  

methylenetetrahydrofolate reductase (MTHFR) and the essential cofactor vitamin B12. 

Alternatively homocysteine can be further metabolized to cysteine via cystathionine beta 

synthase (CBS) and the essential cofactor vitamin B6. Homocysteine conversion to cysteine 

occurs primarily in the liver. All other reactions are ubiquitous. For further details on HCy 

biochemistry, see [52,115].  SAM, S-adenosyl methionine; SAH, S-adenosyl homocysteine.  
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Effects of Homocysteic acid (or homocysteate) on brain cells 
 
 

Effects observed 
Effective 

concentration 
Species Reference 

Inhibition of low affinity PMB-
TBOA [blocks high affinity 
excitatory NT transporters] 

insensitive D-aspartate uptake in 
astrocytes 

5mM Rat 
(Holten et al., 

2008) 

 
Neurite loss and size reduction 

>100m after 48 h Rat 

(Heider, 
Lehmensiek, 

Lenk, Muller, & 
Storch, 2004) 

KYNA and KAT activity inhibition 

IC50 
KYNA= 

 3.93mM 
KAT= 
5.0mM 

Rat 
(Kocki et al., 

2003) 

Inhibition of neural network 
activity (spontaneous spike rate) 

IC50 

1.3M 
 

Rat 
(Görtz et al., 

2004) 

Hippocampal (CA1) & cortical 
culture toxicity (death) w/ short 

and long incubation 
 

Short incubation 

 50M (cort. tox) 

100M (hippo. tox) 
 

Long incubation (48hrs) 
All tox at 5mM 

Rat 
 

(Flott-Rahmel 
et al., 1998) 

Excitatory currents in granular 
and purkinje cells 

50M Chicken 
(Kataoka, 

1996) 

Agonism of mGluR4a currents 
and inhibition of lateral perforant 

pathway neurons 
 

EC50 for inhibition of 
mGluR4a inhibition of 

cAMP: 49M 
 

IC50 for inhibition of 
lateral perforant 

pathway depolarisation 
[electrode stimulated]: 

400M 
 

Hamster 
(Johansen et 

al., 1995) 

IP3 formation + NMDA agonism 
In cerebellar granule cells 

 

EC50: 117M 
 

Cell 
culture 

(Gorman & 
Griffiths, 1994) 

Release of D-aspartate 
(exogenous) & Activation of 
excitatory NTR in cerebellar 

granule cells 
 

500 M 
Cell 

culture 
(Dunlop & 

Grieve, 1992) 

NMDA and AMPA steady state EC50 Cell (Curras & 
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inward current production NMDA: 13M 

AMPA: 430M 
 

culture Dingledine, 
1991) 

Neuronal death 50M 
Cell 

culture 

(Eimerl & 
Schramm, 

1991) 

Cell death 
Neurotoxicity 

1000M 
Cell 

culture 

(Murphy, 
Schnaar, 
Coyle, & 

Johns, 1990) 

Glycine antagonism at NMDA 100M Rat 
(Mcdonald, 

1990) 

Agonism of NMDA coupled to 
[3H]GABA release in striatum . 

Measured via increases in GABA 
conc over 3min depolarisation 

period 

EC50: 36M Mouse (Weiss, 1990) 

NA release from hippocampal 
neurones 

2mmol/L Rat 
(Wu, Vezzani, 
& Samanin, 

1989) 

High affinity L-Glu transporter 
inhibition in synaptosomes, 

neurons and astrocytes (from 
mice) 

Synaptosomes: 

5000M,  
Neurons: 

2500M 
Astrocytes: 

1250M 

Mouse 
(R Griffiths et 

al., 1989) 

Neurotoxicity & 
Neuronal death 

ED50 

40M 
Mouse 

(Kim, Koh, & 
Choi, 1987) 

Inhibition of [(3)H]l-glutamate 
uptake in astrocytes 

1mM 
Rat & 
mouse 

(Balcar, 
Schousboe, 
Spoerri, & 

Wolff, 1987) 

Displacement GABA-mimetic 
[3H]muscimol from specific, high-

affinity sites 

Ki(apparent) 
4800 microM 

Cow 
(Egbuta & 

Griffiths, 1987) 

1. Receptor binding assays: 
NMDA, AMPA & katinate 

2. Sodium flux through NMDA 
3. Excitotoxicty in retinas on 

histopath eval 

1. NMDA= 3.3M, 

Katinate=110M, 

AMPA=20M 

2. Potency: 1.4M 
3. Lowest effective 

dose: 200M 

Rat & 
Chicken 

(Pullan et al., 
1987) 

Inhibition of high affinity 
taurine uptake in to 
astrocytes  

 

IC50: 1.5mM 
 

Rat 
(Allen, 

Schousboe, & 
Griffiths, 1986) 

Displacement at excitatory amino 
acid receptors 

Ki (M) 
D,L-HCA: 45.9  
D-HCA: 64.2 
L-HCA: 38.7 

Snail & 
rat 

(Pin, Bockaert, 
& Recasens, 

1986) 
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