58 research outputs found

    Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    Get PDF
    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events.We would like to thank Richard Dorrell (University of Cambridge) and Ross Waller (University of Cambridge) for useful discussions. This work was supported by a Wellcome Trust Project Grant [WT094249] to CJH and RERN; and an Australian Postgraduate Award to ERB.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/gbe/evw00

    Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    Get PDF
    Chloroplasts contain their own genomes, containing two broad functional types of gene: genes encoding proteins directly involved in photosynthesis, and genes with a non-photosynthesis function, such as cofactor biosynthesis, assembly of protein complexes, or expression of the chloroplast genome. Thus far, to our knowledge, no chloroplast gene expression pathways in any lineage have been found to target one functional category of gene specifically. Here, we show that a chloroplast RNA processing pathway – the addition of a 3′ poly(U) tail – is specifically associated with photosynthesis genes in two species of algae, the ‘chromerids’ Chromera and Vitrella. The addition of the poly(U) tail enables the precise processing of mature photosynthesis gene transcripts from precursor RNA, and is likely to be essential for expression of the chromerid photosynthesis machinery. The chromerid algae are the closest photosynthetic relatives of a parasitic group of eukaryotes, the apicomplexans, which include the malaria pathogen Plasmodium. Apicomplexans are descended from algae, and retain a reduced chloroplast, which contains genes only of non-photosynthesis function. We have confirmed that 3′ poly(U) tails are not added to Plasmodium chloroplast transcripts. The expression pathways associated with photosynthesis genes have therefore been lost in the evolution of the apicomplexan chloroplast, and this loss could potentially have driven the transition from photosynthesis to parasitism

    How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence?

    Get PDF
    Forensic and ancient DNA (aDNA) extracts are mixtures of endogenous aDNA, existing in more or less damaged state, and contaminant DNA. To obtain the true aDNA sequence, it is not sufficient to generate a single direct sequence of the mixture, even where the authentic aDNA is the most abundant (e.g. 25% or more) in the component mixture. Only bacterial cloning can elucidate the components of this mixture. We calculate the number of clones that need to be sampled (for various mixture ratios) in order to be confident (at various levels of confidence) to have identified the major component. We demonstrate that to be >95% confident of identifying the most abundant sequence present at 70% in the ancient sample, 20 clones must be sampled. We make recommendations and offer a free-access web-based program, which constructs the most reliable consensus sequence from the user's input clone sequences and analyses the confidence limits for each nucleotide position and for the whole consensus sequence. Accepted authentication methods must be employed in order to assess the authenticity and endogeneity of the resulting consensus sequences (e.g. quantification and replication by another laboratory, blind testing, amelogenin sex versus morphological sex, the effective use of controls, etc.) and determine whether they are indeed aDNA

    Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid.

    Get PDF
    The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.CNRS Investissements de l'avenir programme Gordon and Betty Moore Foundatio

    Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins

    Get PDF
    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum , as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events

    Transcripts in the Plasmodium Apicoplast Undergo Cleavage at tRNAs and Editing, and Include Antisense Sequences

    Get PDF
    The apicoplast, an organelle found in Plasmodium and many other parasitic apicomplexan species, is a remnant chloroplast that is no longer able to carry out photosynthesis. Very little is known about primary transcripts and RNA processing in the Plasmodium apicoplast, although processing in chloroplasts of some related organisms (chromerids and dinoflagellate algae) shows a number of unusual features, including RNA editing and the addition of 3' poly(U) tails. Here, we show that many apicoplast transcripts are polycistronic and that there is extensive RNA processing, often involving the excision of tRNA molecules. We have identified major RNA processing sites, and have shown that these are associated with a conserved sequence motif. We provide the first evidence for the presence of RNA editing in the Plasmodium apicoplast, which has evolved independently from editing in dinoflagellates. We also present evidence for long, polycistronic antisense transcripts, and show that in some cases these are processed at the same sites as sense transcripts. Together, this research has significantly enhanced our understanding of the evolution of chloroplast RNA processing in the Apicomplexa and dinoflagellate algae

    Progressive and biased divergent evolution underpins the origin and diversification of peridinin dinoflagellate plastids

    Get PDF
    Dinoflagellates are algae of tremendous importance to ecosystems and to public health. The cell biology and genome organization of dinoflagellate species is highly unusual. For example, the plastid genomes of peridinin-containing dinoflagellates encode only a minimal number of genes arranged on small elements termed "minicircles". Previous studies of peridinin plastid genes have found evidence for divergent sequence evolution, including extensive substitutions, novel insertions and deletions, and use of alternative translation initiation codons. Understanding the extent of this divergent evolution has been hampered by the lack of characterized peridinin plastid sequences. We have identified over 300 previously unannotated peridinin plastid mRNAs from published transcriptome projects, vastly increasing the number of sequences available. Using these data, we have produced a well-resolved phylogeny of peridinin plastid lineages, which uncovers several novel relationships within the dinoflagellates. This enables us to define changes to plastid sequences that occurred early in dinoflagellate evolution, and that have contributed to the subsequent diversification of individual dinoflagellate clades. We find that the origin of the peridinin dinoflagellates was specifically accompanied by elevations both in the overall number of substitutions that occurred on plastid sequences, and in the Ka/Ks ratio associated with plastid sequences, consistent with changes in selective pressure. These substitutions, alongside other changes, have accumulated progressively in individual peridinin plastid lineages. Throughout our entire dataset, we identify a persistent bias toward non-synonymous substitutions occurring on sequences encoding photosystem I subunits and stromal regions of peridinin plastid proteins, which may have underpinned the evolution of this unusual organelle.Wellcome Trus

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore