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The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing 

very few genes, which are located on small chromosomal elements termed "minicircles". 

These minicircles may contain genes, or no recognisable coding information. Transcripts 

produced from minicircles may undergo unusual processing events, such as the addition of 

a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of 

non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty 

minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an 

integrated plastid genome and transcriptome for the model peridinin dinoflagellate 

Amphidinium carterae, identifying a previously undescribed minicircle. We also profile 

transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present 

evidence that antisense transcripts are produced within the A. carterae plastid, but show 

that these transcripts undergo different end cleavage events from sense transcripts, and 

do not receive 3' poly(U) tails. The difference in processing events between sense and 

antisense transcripts may enable the removal of non-coding transcripts from peridinin 

dinoflagellate plastid transcript pools.  

Introduction 

Much is known about the organisation and expression of plastid genomes (Green 2011; 

Barbrook, et al. 2018). The plastid genomes of photosynthetic eukaryotes retain fewer than 



250 genes (Green 2011; Muñoz-Gómez 2017); these are typically organised as a single, 

circular chromosome, although some may have alternative linear or branched forms 

(Oldenburg and Bendich 2004; Barbrook, et al. 2010; Janouskovec, et al. 2013; Del Cortona, 

et al. 2017). Genes are usually arranged in operons, and are co-transcribed before being 

cleaved into mature mRNAs (Barkan 2011; Luro, et al. 2013; Hotto, et al. 2015).  The plastid 

transcript processing machinery is also involved in the degradation of antisense transcripts 

(Hotto, et al. 2015; Castandet, et al. 2016). which may otherwise anneal to and inhibit the 

function of the corresponding sense transcripts (Sharwood, et al. 2011; Hotto, et al. 2012). 

These antisense transcripts are generated through transcription from specific promoters 

located on the plastid template strand (Hotto, et al. 2012; Zhelyazkova, et al. 2012), through 

inefficient transcript termination of polymerases transcribing genes that are in opposing 

transcriptional orientation (Rott, et al. 1996; Sharwood, et al. 2011), and through RNA-

dependent RNA polymerase activity in the plastid (Zandueta-Criado and Bock 2004).  

Perhaps the most bizarre example of plastid genome organisation is in the peridinin-

containing plastids of dinoflagellate algae (Barbrook, et al. 2018). Dinoflagellates are 

ecologically abundant, and include free-living photosynthesisers, heterotrophs, and 

endosymbionts of other organisms (Lima-Mendez, et al. 2015; Suggett, et al. 2017). The 

majority of the phototrophic species possess a plastid derived from the endosymbiosis of 

red algae, containing the light-harvesting pigment peridinin (Haxo, et al. 1976; Dorrell, 

Klinger, et al. 2017). The genome of this plastid contains twelve-coding protein genes, two 

ribosomal RNA genes, and an erratic small number of transfer RNA genes (Barbrook, et al. 

2014; Mungpakdee, et al. 2014), and is fragmented into small circular DNA molecules, 

termed “minicircles” (Zhang, et al. 1999; Howe, et al. 2008). Each minicircle contains one 

gene only, although minicircles with multiple genes are known in individual species (Nelson, 

et al. 2007; Barbrook, et al. 2012; Dorrell, Klinger, et al. 2017), alongside a non-coding “core 

region” that is broadly conserved across all minicircles in a species (Zhang, et al. 2002; 

Nisbet, et al. 2004; Mungpakdee, et al. 2014; Barbrook, et al. 2018). In addition “empty” 

minicircles and microcircles, which lack coding information, are known in individual 

dinoflagellate species (Zhang, et al 1999; Hiller 2001; Nisbet, et al. 2004). 

The organisation of the peridinin dinoflagellate plastid genome has influenced the diversity 

of transcripts produced. Both coding and empty minicircle sequences are transcribed (Wang, 

et al. 2005; Nisbet, et al. 2008) through a “rolling circle” mechanism, which can yield 

transcripts containing multiple copies of plastid minicircle sequence (Dang and Green 2010; 



Barbrook, et al. 2012). However, the predominant bands identified in northern blots of 

dinoflagellate plastid transcripts correspond to monocistronic mRNAs, which are presumably 

generated through the processing of these long precursors (Barbrook, et al. 2001; Nisbet, et 

al. 2008; Dang and Green 2009). The post-transcriptional processing events observed include 

cleavage to generate mature transcript 5’ and 3’ ends (Nelson, et al. 2007; Dang and Green 

2010; Barbrook, et al. 2012; Dorrell, Hinksman, et al. 2016), extensive substitutional editing 

(Zauner, et al. 2004; Mungpakdee, et al. 2014; Klinger, et al. 2018), and the frequent 

addition of a 3' poly(U) tail to plastid transcripts (Wang and Morse 2006). Both of the last 

two processes appear to have evolved within dinoflagellates and their closest evolutionary 

relatives (e.g. Chromera, apicomplexans), independently to other algal chloroplast lineages 

(Janouskovec, et al. 2010; Dorrell and Howe 2012; Dorrell, et al. 2014; Nisbet, et al. 2016).  

We have previously generated extensive plastid sequence data for the model peridinin 

dinoflagellate Amphidinium carterae, including minicircle sequences for all fourteen known 

dinoflagellate plastid protein-coding and rRNA genes (Barbrook and Howe 2000; Barbrook, 

et al. 2001; Nisbet, et al. 2004; Barbrook, et al. 2006; Barbrook, et al. 2018), together with 

detailed transcript sequence maps generated through RT-PCR and northern blotting of the 

coding sequences produced from specific plastid minicircles (Nisbet, et al. 2008; Barbrook, 

et al. 2012; Dorrell, Klinger, et al. 2017).  

Here, we characterise the diversity of non-coding genomic elements and transcripts in the 

Amphidinium plastid.  Using integrated genomic and transcriptomic data, we identify a 

novel, highly transcribed minicircle with no obvious coding content; and profile non-coding 

transcripts generated from the coding psbA and petB/atpA minicircles, focussing on 

transcripts covering minicircle core regions. We also identify the presence of antisense 

transcripts. Notably, we find that antisense transcripts do not undergo similar terminal 

cleavage events to those found in mature mRNAs, and lack poly(U) tails. We propose that 

the differential processing of sense and antisense transcripts in dinoflagellate plastids might 

indirectly enable the degradation of non-coding sequence degradation during plastid 

transcript processing.  

 

 

 



Results 

Coding and non-coding diversity of the Amphidinium carterae plastid genome 

First, we wished to produce a definitive inventory of the coding and empty minicircle 

sequences present in the Amphidinium carterae plastid. For this, we performed next-

generation sequencing of genomic DNA isolated from A. carterae CCMP1314, which had 

been separated on a caesium chloride gradient (to obtain plastid-enriched DNA) and treated 

with Plasmid-Safe DNAse (to select for minicircle DNA) to yield a plastid-enriched fraction 

(Fig. 1) (Griffith 1991; Lang and Burger 2007). We generated 10,120,479 reads, which we 

could assemble into 21 minicircle contigs (Table S1, Sheet 1).  

We identified all of the previously identified coding minicircles of the A. carterae plastid: 

psbA, psbB, psbC, psbD/psbE/psbI, petD, petB/atpA, atpB, and the 23S minicircle and 16S 

minicircle (previously annotated as Minicircle 4) (Barbrook and Howe 2000; Barbrook, et al. 

2001; Nisbet, et al. 2004; Barbrook, et al. 2006), with between 30 and 116-fold average read 

coverage (Fig. 1A). We additionally identified all four of the previously identified “empty” 

minicircles (Minicircles 1-3 and 5) in A. carterae (Nisbet, et al. 2004; Nisbet, et al. 2008). 

These minicircles had comparable (47-80-fold) average read depths to the coding minicircles 

identified, indicating they form a substantial component of plastid DNA (Fig. 1A). We 

confirmed that these four empty minicircles lack obvious protein homologues in other 

sequenced dinoflagellate genomes, and in transcriptome libraries from the Marine Microbial 

Eukaryote Transcriptome Sequencing Project (MMETSP), supporting the idea that they lack 

coding function (Fig. S1A) (Barbrook, et al. 2014; Mungpakdee, et al. 2014; Dorrell, Klinger, 

et al. 2017; Klinger, et al. 2018). We could not identify distinct equivalents of the 

“microcircles” (empty minicircles of < 1kbp size) previously sequenced from A. carterae, in 

the genomic dataset, which reflects the fact that these frequently contain sequences 

identical and indistinguishable from fragments of coding and empty minicircles (Nisbet, et al. 

2004; Barbrook, et al. 2018).  

Alongside this, we identified one entirely novel minicircle, referred henceforth as “empty 

minicircle 6”. This corresponded to a 2344 bp empty minicircle sequence, containing 47.7 % 

GC bases, a value comparable to all existing A. carterae minicircle sequences, and a core 

region including a 9-bp AGAGAAAAA motif conserved in all other minicircle sequences from 

this strain (Barbrook, et al. 2006). We confirmed the presence of this minicircle through PCR 

and Sanger sequencing from independently isolated A. carterae CCMP1314 gDNA (Fig. S1B). 

This minicircle was not found to contain any recognisable coding, rRNA or tRNA sequences, 



either by BLAST or structural searches, nor was it found to contain any regions of sequence 

similarity to other Amphidinium CCMP1314 minicircles (apart from the core region). Instead, 

it contained an ORF of 163 codons, which is highly similar (>90%) in amino acid sequence to 

an ORF found on a minicircle previously identified in the related strain Amphidinium sp. CS-

21 (Hiller, 2001), and also similar to a shorter (≥67 aa, C-terminal incomplete) ORF inferred 

to be encoded by the Amphidinium massartii MMETSP transcriptome (Dorrell, Klinger, et al. 

2017) (Fig. S1B). However, the novel ORF generates no significant matches in BLAST searches 

of protein and translated nucleotide databases outside of the Amphidinium genus (Fig. 

S1B).We identified transcription of this minicircle in the A. carterae CCMP1314 MMETSP 

library (Fig. S1A), and through RT-PCR of random-hexamer primed cDNA, but could not 

identify transcripts from RT-PCRs of oligo-d(A) primed cDNA, using 12 minicircle-specific 

primers, indicating that this minicircle does not contain any poly(U) sites (Table S2, section 1, 

lines 1-18). 

Transcriptomic mapping of the Amphidinium carterae plastid 

Next, we wished to determine how abundant the transcripts were from the coding and non-

coding sequences contained within the A. carterae plastid. We generated a plastid 

transcriptome for A. carterae CCMP1314 by Illumina sequencing of adaptor-conjugated RNA 

(Table S1, sheet 2). Each plastid gene was highly represented in the RNA sequence library, 

with averages of between 3130-fold coverage (for the 16S rRNA) and 581.8-fold coverage 

(for the photosystem II subunit psbI) for each of the recognised genes located in the A. 

carterae plastid genome (Barbrook, et al. 2001; Nisbet, et al. 2004; Barbrook, et al. 2006) 

(Figs. 1B, 1C). We observed very little relative difference in the transcript abundance of each 

plastid gene (Fig. 1C). This is in contrast to what is observed in other alveolate plastid 

transcriptomes (e.g. Chromera velia and Karenia mikimotoi; (Janouskovec, et al. 2013; 

Dorrell, Hinksman, et al. 2016)), where transcripts encoding the photosystem II reaction 

centre subunits psbA and psbD are far more abundant than those from other plastid genes. 

We notably found higher transcript read coverage on the novel empty minicircle 6 (332.9) 

compared to other empty minicircles (81.6-148.7; Fig. 1C), consistent with the fact that this 

was the only empty minicircle detectable in the A. carterae MMETSP transcriptome (Fig. 

S1C). 

We noted varying patterns of read coverage for different minicircles, consistent with 

different patterns of transcript maturation (Fig. 1B; Fig. S2). For example, the psbE, ORF1 

and psbI genes, which are adjacent to one another in the psbD/psbE/ORF1/psbI minicircle, 



showed similar levels of read coverage with no clear decrease in coverage over the 

intergenic region, reinforcing previous evidence that they are cotranscribed and processed 

to form a polycistronic transcript (Barbrook, et al. 2012) (Fig. 1B). We similarly observed 

largely continuous read coverage between petD and ORF2 in the polycistronic 

petD/ORF2/ORF3/ORF4 minicircle, consistent with previous RT-PCR data indicating that 

these genes are cotranscribed and possess a common poly(U) site, located downstream of 

ORF2 (Barbrook et al., 2012) (Fig. S2). 

In contrast, psbD which has been shown to be processed to a monocistronic transcript, was 

covered by a clearly defined pattern of associated reads (Fig. 1B) (Nisbet, et al. 2008; 

Barbrook, et al. 2012). We similarly observed defined gaps in read coverage between petB 

and atpA in the polycistronic petB/ atpA minicircle; and between petD/ORF2 and ORF3 in 

the  petD/ORF2/ORF3/ORF4 minicircle consistent with previous northern and RT-PCR data 

indicating these genes are represented by separate mRNA populations (Barbrook et al., 

2001; Barbrook et al., 2012) (Fig. S2). 

Elsewhere, the mRNA sequencing data provided windows into the processing events 

associated with previously unexplored Amphidinium plastid genes (fig. S2). These included 

substantial read coverage within the petD and atpB 5’ UTRs, despite the fact that the 5’ end 

of each gene is marked by a defined minimum in transcript coverage; these might plausibly 

correspond to previously undetected plastid ORFs, or regions encoding small RNAs. 

Moreover, we detected maximal coverage of over 6000 and 16000-fold respectively in the 

23S and 16S minicircles, despite other presumed coding regions of both minicircles having 

substantially below 1000-fold read coverage (fig. S2). Alongside previous data suggesting 

that the 23S and 16S sequences of dinoflagellate plastids are highly divergent and lack 

otherwise conserved regions, these peaks might be consistent with internal cleavage of 

ribosomal RNAs into topographically separate elements (Barbrook et al., 2006; Dang and 

Green, 2009). Verification of these peaks by northern blotting or RT-PCR, will be essential to 

determine if they reflect genuine transcript processing events, or reflect secondary 

structures or other features within plastid mRNA pools. 

Terminal processing of non-coding and core-containing transcripts of plastid minicircles 

For all minicircles studied, we noted that there were very few reads covering non-coding 

sequences such as core regions. For example, in the case of the psbD-psbE-ORF1-psbI 

minicircle, which had an average 1333-fold read coverage over the entire sequence, and a 

maximum 3778-fold read coverage within the psbD CDS, the average read coverage for the 



280 bp core region (Barbrook and Howe 2000) was 146-fold, with a minimum of 3-fold 

coverage within the core interior (Fig. 1B). We found similar scenarios in all other minicircles 

studied (Fig. 1B). This supports evidence from previous studies that transcripts covering 

minicircle core regions are present at only very low abundance in dinoflagellate plastid RNA 

pools (Nisbet, et al. 2008; Dang and Green 2010; Barbrook, et al. 2012). 

We have previously characterised the mature coding transcripts produced from each 

minicircle both by northern blotting, and RT-PCR (Barbrook et al., 2001; Barbrook et al., 

2012). We now wished to investigate what terminal processing events are associated with 

non-coding and core-containing transcripts. First, we hybridised northern blots of total 

cellular RNA using single-stranded RNA probes complementary to different regions of the 

psbA and petB/ atpA minicircles (Figs. 2A, 2B; Table S5, probes labeled “sense” in column B), 

including non-coding regions (the petB 5’ UTR, and the psbA 5’ and 3’ UTR) and coding 

regions of each minicircle. To visualise the non-coding transcript diversity of each minicircle, 

we used much larger quantities of total cellular RNA (30 μg) than previously hybridised.  

The most intense hybridisation obtained corresponded in size to the monocistronic mRNAs 

of each gene (transcripts labelled a-c; psbA : 1100 nt, petB: 700 nt, atpA: 1500 nt; Figs. 2A, 

B). We additionally identified lower abundance bands of less than one minicircle length 

(transcripts labeled d-f; psbA: 700 nt, petB: 750 nt, atpA: 1000-350 nt). We could additionally 

detect, in overexposed psbA blots, a 2300 nt transcript (band labeled g, Fig. 2A); and 2700 

and 5400 nt transcripts in overexposed petB/atpA blots (band labeled h, k; Fig. 2B). As the 

length of the psbA and petB/atpA minicircles are respectively 2311 bp and 2713 bp, these 

transcripts are likely to correspond to transcripts containing one, or two complete minicircle 

sequences.   

Alongside this, we performed circular RT-PCR, a technique that allows the precise 

identification of 5' and 3' terminus positions from individual transcripts (Barbrook, et al. 

2012). For this, cDNA synthesis was carried out using primers specific to core regions of the 

psbA and petB/atpA minicircles, and PCR reactions were then performed using different 

combinations of primers, designed against different regions of minicircle sequence, to 

identify core-containing transcripts present (Materials and Methods) (Fig. S3A; Table S2, 

section 2, lines 19-41).  

26 core-containing transcripts were identified through this approach (Fig. S3B; Table S3, 

sections 1-2, lines 5-57). Twenty of the transcripts that were identified (13 from the psbA 



minicircle, 7 from petB/atpA) were less than one minicircle in length. These transcripts 

terminated at the 3' end within the minicircle core region, and none contained a complete 

coding sequence. The remaining six transcripts (5 from petB/atpA, and one psbA transcript) 

were of greater than one minicircle length, thus corresponding to multi-copy transcripts (Fig. 

S3B; Table S3, sections 1-2, transcripts marked “multi-copy” in column A). The multi-copy 

psbA transcript extended through a complete copy of psbA downstream of the core region, 

terminating in the psbA 3' UTR (Table S3, section 1, line 13); and all five of the multi-copy 

petB/atpA transcripts contained a complete downstream copy of petB, although in each 

case they terminated at the 3' end within the atpA CDS, hence did not have a complete 

downstream atpA sequence (Table S3, section 2, lines 44-48). 

Two of the multi-copy transcripts from the petB/atpA minicircle had similar 5’ ends to those 

identified for monocistronic, polyuridylylated atpA mRNAs, located 340 and 345 bp 

upstream of the atpA CDS (Fig. S3B, asterisked petB/atpA multi-copy transcripts ii and iii; 

Table S3, section 2, lines 45-46). Similar 5’ end positions for monocistronic atpA transcripts 

have also been identified in previous circular RT-PCR studies (Barbrook, et al. 2012). Thus, 

some core-containing transcripts undergo similar cleavage events generating 5’ ends as 

monocistronic mRNAs.  

Core-containing transcripts can receive poly(U) tails 

Given the presence of mature 5' ends on some core-containing transcripts, we wished to 

determine whether core-containing transcripts ever receive 3' poly(U) tails. As we did not 

detect polyuridylylated core-containing transcripts by circular RT-PCR, we performed an 

oligo-d(A) primed RT-PCR to investigate directly their presence for the petB/atpA and psbA 

minicircles. First, cDNA was synthesised using primers containing an oligo-d(A) sequence at 

its 5’ end, and a gene-specific sequence at the 3’ end of two minicircles (encoding petB/atpA 

and psbA; Table S2, section 3, lines 45-47) (Barbrook, et al. 2012). Each primer would 

therefore specifically anneal to transcripts containing a 3’ poly(U) tail (through 

complementary pairing to the oligo-d(A) region), but should preferentially anneal to 

transcripts of the gene corresponding to the gene-specific region. PCR amplifications of the 

generated cDNA were performed using combinations of primers flanking the cDNA synthesis 

site, to identify transcripts that contained a second copy of the minicircle CDS (Fig. 2C; Table 

S2, section 3, lines 48-54).  



For all three genes, products were identified consistent with the presence of 

polyuridylylated multi-copy transcripts (Fig. 2C; lanes 1, 3, 5). Products were not identified 

for any PCR under reverse transcriptase negative conditions, confirming that these products 

were not due to residual gDNA contamination (Fig. 2C; lanes 2, 4, 6). To confirm that the 

cDNA primers employed annealed specifically to polyuridylylated transcripts of one gene, 

PCRs were performed using template generated with the psbA cDNA primer and the petB 

PCR primers, and using template generated with either the petB or atpA primer and the 

psbA PCR primers (Fig. 2C; lanes 9-11). Products were not identified in any case, confirming 

that the cDNA primers used were specific to the intended template, and were not annealing 

to other transcripts in the RNA samples at detectable levels. Thus, poly(U) tails can be added 

to RNA transcripts of more than one minicircle length.  

Presence of antisense transcripts in peridinin dinoflagellate plastids 

We wished to test whether antisense transcripts were present in the A. carterae plastid. The 

RNA library used for sequencing was ligated to a custom RNA adapter prior to cDNA 

synthesis, allowing the precise identification of transcript termini (Fig. S4A) (Scotto-Lavino, 

et al. 2006; Dorrell, Hinksman, et al. 2016). As this RNA adapter was non-palindromic, it can 

be used to discriminate sense and antisense transcripts, i.e. by comparing the orientation of 

the ligation site to the the corresponding minicircle sequence (Fig. S4A). We therefore 

inspected the next-generation sequence data for evidence of antisense transcripts. We 

found 955 reads that contained a detectable transcript 5' end, of which 67 (7.0%) 

corresponded to transcripts in the reverse orientation of the minicircle sequence, i.e. 

possible plastid antisense transcripts (Georg, et al. 2010; Dorrell, Hinksman, et al. 2016) (Fig. 

S4A; Table S4). We detected only negligible numbers of plastid transcript 3' end ligation sites 

through this approach (data not shown). 

We additionally searched for antisense transcripts using RNA-ligase mediated 5' RACE. This 

technique uses the same RNA adapter ligation previously used for the next-generation 

sequencing experiments. However, in this case, cDNA was synthesised from adapter ligated 

A. carterae RNA using primers with the same sequence as the coding strands of the psbA 

and petB/atpA minicircles (Fig. S4A; Table S2, section 4, lines 57-59), which would anneal to 

antisense transcripts. These cDNA products were used as template for PCRs, using primers 

with the same sequence as the coding strand of the psbA and atpA genes, and a PCR primer 

with the same sequence as the RNA adapter used (Fig. S4A; Table S2, section 4, lines 61-63).  



Through this approach, we detected an antisense transcript for the atpA gene, which 

terminated at the 5' end at a position 115 bp inside the 5' end of the atpA (Fig. S4C). This 

product was detected independently three times, using different RNA samples, but could 

not be identified in ligation- or reverse-transcriptase negative controls, confirming that it 

was not an artifact of mis-annealing of the adapter-specific primer on similar regions of 

minicircle sequence, or the result of genomic contamination in the adapted RNA libraries. 

Finally, we performed RT-PCRs using the antisense cDNA preparations, the primer used for 

cDNA synthesis, and a PCR primer designed to be similar to the spliced-leader (SL) sequence, 

a short motif associated with the 5’ end of most dinoflagellate nuclear transcripts (Lin, et al. 

2010; Gavelis, et al. 2015). Products were not detected, suggesting that it is unlikely that 

these transcripts were generated within the dinoflagellate nucleus.  

Antisense transcripts are not complementary to sense transcripts  

In plants, and in the fucoxanthin-containing dinoflagellate Karenia mikimotoi, sense and 

antisense transcripts from individual plastid genes have been documented to possess 

different consensus terminus positions (Zghidi-Abouzid, et al. 2011; Dorrell, Hinksman, et al. 

2016). We tested whether this is true also in A. carterae by detailed profiling of the 

predominant terminus positions associated with sense and antisense transcripts over the A. 

carterae psbA and petB/atpA minicircles. First, we performed circular RT-PCR using cDNA 

synthesis primers complementary to the template strand of each minicircle, and PCRs using 

different combinations of primers, against different regions of each minicircle sequence, to 

obtain an estimate for the full diversity of antisense transcripts that are present (Fig. 3A; 

Table S2, section 5, lines 65-83). We additionally hybridised northern blots with single-

stranded RNA probes with the same sequence as regions of each minicircle coding strand, to 

identify the antisense transcripts associated with regions of each minicircle complementary 

to previously investigated sense transcripts (Figs. 2A, B; Fig. 3B; Table S5, probes labeled 

“antisense” in column B). 

We identified multiple potential antisense transcripts from each minicircle through each 

approach. The vast majority of antisense transcripts identified by circular RT-PCR terminated 

at positions distinct from the corresponding sense transcripts from each minicircle (Fig. 3A; 

Table S3, sections 3, 4, lines 59-95). For example, we could not identify any antisense 

transcripts that terminated at either ends at positions complementary to the psbA, petB or 

atpA poly(U) sites, and only found two that might possess termini complementary to 



consensus mRNA 5’ end positions (Fig. 3A, asterisked transcripts; Table S3, section 3, lines 

73-74). 

For the psbA minicircle, two transcripts, of 750 nt and 950 nt length, were detected by 

northern blot using probes for the 5' UTR and 5' end of the CDS (Fig. 3B; transcripts labeled i-

ii). These may correspond to two antisense transcripts, one 748 nt length, and one 924 nt 

length, identified through circular RT-PCR (Fig. 3A). For the petB/atpA minicircle the 

predominant bands were identified for atpA (of 250 and 500 nt length) with the 5' end 

probe (Fig. 3B; transcripts labelled iii-iv). These may correspond to 261 nt and 508 nt length 

antisense transcripts identified by circular RT-PCR, covering regions internal to the atpA CDS 

(Figs. 3A, 3B; transcripts labelled iii, iv). A faint band of approximately 1250 nt length was 

identified on overexposure of the blots hybridised to both the 5' and 3' atpA probes, which 

may correspond to a 1228 nt transcript identified from circular RT-PCR to extend from the 

core into the region complementary to the 5’ end of atpA (Figs. 3A, 3B; transcript labelled v).  

In no case did we identify northern hybridization in an antisense transcript blot of the size 

corresponding to a mature mRNA (i.e., an 1100 nt psbA transcript, a 700 nt petB transcript, 

or a 1500 nt atpA transcript), or a visualized non-coding or core-containing transcript (e.g., 

transcripts corresponding to one or two complete minicircle lengths) from the sense strand 

blots (Figs. 2A, B; Fig. 3B). Moreover, we did not identify any hybridisation in the psbA blots 

that might correspond to the two antisense transcripts identified through circular PCR with 

terminus positions complementary to sense transcripts (expected transcript size 400-500 nt; 

Figs. 3A, 3B). Thus, sense and antisense transcripts undergo different terminal processing 

events in the A. carterae plastid. 

Antisense transcripts lack poly(U) tails 

We wished to determine whether poly(U) tail addition in peridinin dinoflagellates is 

preferentially associated with sense transcripts over antisense transcripts, as occurs in the 

fucoxanthin-containing species Karenia mikimotoi. To do this, cDNA was synthesised from A. 

carterae total cellular RNA using an oligo-d(A) primer previously shown to anneal to plastid 

poly(U) tails from a wide range of plastid genes in dinoflagellate and related species (Table 

S2, section 6, line 86) (Barbrook, et al. 2012; Dorrell and Howe 2012; Dorrell, et al. 2014; 

Richardson, et al. 2014). PCRs were then performed using the same oligo-d(A) primer as a 

PCR primer, paired with a PCR primer with the same sequence as the template strands of 



the psbA and petB/atpA minicircles, to identify polyuridylylated antisense transcripts (Table 

S2, section 6, lines 88-95).  

Products were not identified using any of the template strand primers, indicating that 

polyuridylylated antisense transcripts were not present (Fig. 4; lanes 2-3, 7-8). Products 

were not detected even following a second round of PCR amplification of the primary PCR 

product. In contrast, polyuridylylated sense transcripts were amplified from each cDNA 

preparation, by PCR with the oligo-d(A) primer, and PCR primers with the same sequence as 

the coding strand of the psbA, petB and atpA genes, confirming that the oligo-d(A) primed 

cDNA synthesis reactions were successful (Fig. 4; lanes 4, 9, 10). In addition, products 

covering each of the regions of sequence tested were amplified from each RNA samples, 

using gene-specific cDNA synthesis and PCR primers (Fig. 6, lanes 5-6; 11-12). Thus, 

antisense transcripts of the psbA and petB/ atpA minicircles in the A. carterae plastid do not 

possess 3’ poly(U) tails.  

  



Discussion  

We have produced a comprehensive study of the plastid genome and transcriptome of the 

model peridinin-containing dinoflagellate species Amphidinium carterae. We show that 

existing surveys of the coding and non-coding diversity of this genome (Barbrook, et al. 

2018) are largely complete, although we document a previously unidentified non-coding 

minicircle from next-generation sequencing (Fig. 1). Unusually, transcripts from this 

minicircle are at somewhat higher abundance than other empty minicircles, and it contains 

an ORF also detectable in other members of the genus Amphidinium (Fig. S1; Fig. S2); 

whether this is consistent with it possessing a coding or other function remains to be 

determined. Otherwise, we demonstrate that the peridinin dinoflagellate plastid is 

characterised by relatively uniform transcript abundance across all protein coding regions 

(Fig. 1; Fig. S2). This is consistent with differences in gene expression being mediated by 

post-transcriptional or translational regulation, as has previously been inferred to occur both 

at specific dinoflagellate plastid loci, and in the dinoflagellate nucleus (Okamoto and 

Hastings 2003; Wang, et al. 2005).  

Our data indicate that core-containing, and non-coding regions of minicircle sequence are 

present at much lower abundance in plastid transcript pools than coding sequences (Figs. 2, 

4), consistent with information from previous studies (Nisbet, et al. 2008; Dang and Green 

2010; Barbrook, et al. 2012). The low read coverage over minicircle core regions might 

reflect limited transcription through these sequences, for example if the minicircle core acts 

as an effective transcriptional terminator, or alternatively might reflect very efficient 

cleavage or degradation of multi-copy transcripts by the plastid transcript processing 

machinery (Nisbet, et al. 2008; Dang and Green 2010). Notably, we infer the presence of 

both mature 5’ end processing sites, and 3’ poly(U) tails on some core-containing transcripts 

of more than one minicircle length (Fig. 2C; Fig. S3). Polyuridylylated polycistronic transcripts 

of less than one minicircle length have additionally previously been identified from the 

multigene petB/atpA and psbD/psbE/psbI A. carterae minicircles (Nisbet, et al. 2008; 

Barbrook, et al. 2012). These long transcripts with mature 5' and 3' termini in peridinin 

plastids might represent processing precursors of mature mRNAs, or might equally 

represent mis-processed transcripts generated as a result of inefficient end cleavage or 

transcript termination in peridinin plastids. 

Finally, we have identified antisense transcripts from the A. carterae psbA and petB/atpA 

minicircles (Figs. 4, 5; Fig. S4), similar to those previously identified in the plastids of plants 



(Georg, et al. 2010; Castandet, et al. 2016), apicomplexans (Bahl, et al. 2010; Nisbet, et al. 

2016), and fucoxanthin-containing dinoflagellates (Dorrell, Hinksman, et al. 2016). It remains 

to be determined how these transcripts are generated. We do not identify 3’ poly(A) tails, 

nor 5’ spliced leader sequences on any antisense transcript, which might be applied if they 

were products that had been expressed from previously plastid gene fragments, which have 

been relocated to the nucleus (Lin, et al. 2010; Owari, et al. 2014; Gavelis, et al. 2015). 

Moreover, the antisense transcripts do not have complementary terminus positions to those 

associated with mature mRNAs for each minicircle (Figs. 2, 3), which suggests that they are 

not the products of a direct RNA-dependent RNA polymerase activity on sense plastid 

transcripts (Zandueta-Criado and Bock 2004). Thus, we tentatively propose that the 

antisense transcripts are generated through the transcription of plastid minicircle coding 

DNA strands. This may be through the activity of specific promoters located in the reverse 

orientation, or through transcription initiation events that are not dependent on specific 

primary sequence motifs, with the plastid RNA polymerase recruited to features such as 

stem loops or single-stranded nicks in minicircle sequence (Zhang, et al. 2002; Dang and 

Green 2009; Leung and Wong 2009; Barbrook, et al. 2018). Verifying this will require 

detailed mapping of promoter sequences in dinoflagellate plastids, for example through 

high-throughput techniques such as dRNA-seq (Zhelyazkova, et al. 2012). 

It remains to be determined whether antisense transcripts possess specific functions in 

dinoflagellate plastids. In plants, the accumulation of antisense plastid transcripts appears to 

vary in response to thermal stress (Georg, et al. 2010; Castandet, et al. 2016). Plastid 

antisense transcripts might therefore have regulatory effects, constraining the processing 

and expression of sense transcripts in response to environmental and physiological changes, 

similar to the functions of miRNAs in nuclear genomes (Fujii et al., 2005). Alternatively, 

antisense transcripts might have purely deleterious effects on transcript processing and 

translation efficiency, and be actively removed from plastid transcript pools, as has also 

been documented in plants (Sharwood, et al. 2011; Castandet, et al. 2013; Hotto, et al. 

2015). In this latter regard, we note that the antisense transcripts in the A. carterae plastid 

appear to be present at low abundance (Fig.3; Fig. S4), as is the case in fucoxanthin 

dinoflagellate and apicomplexan plastids (Dorrell, Hinksman, et al. 2016; Nisbet, et al. 2016) 

and do not receive 3’ poly(U) tails (Fig. 4). Previous studies have suggested that the poly(U) 

tail confers 3’ end stability to plastid transcripts in dinoflagellates and related species (Dang 

and Green 2009; Barbrook, et al. 2012; Janouskovec, et al. 2013; Dorrell, et al. 2014). The 

specific addition of a poly(U) tail to sense transcripts during transcript processing might 



therefore enable antisense transcripts to be preferentially degraded, leaving a plastid 

transcript pool enriched in mature mRNAs. 

Concluding Remarks 

Control of dinoflagellate plastid gene expression and physiology is clearly complex, relying 

on both transcriptional control and post-transcriptional processing events (Nassoury, et al. 

2005; Wang, et al. 2005), and different processing events may delineate mature mRNAs 

from non-coding transcripts (Richardson, et al. 2014; Dorrell, Hinksman, et al. 2016). 

Understanding the functional significance of antisense transcripts, and their associated 

processing events, will depend on being able to manipulate dinoflagellate plastid genomes, 

e.g. through the introduction of transgenic minicircles producing antisense transcripts, 

which is now possible (Nimmo, et al., under review). Genetic manipulation of plastid 

genome content and gene expression in dinoflagellates may provide fresh insights into the 

unusual transcript processing events associated with this lineage. 

  



Methods 

Cultures and nucleic acid isolation 

Amphidinium carterae CCMP 1314 was cultured in f/2 medium, which was prepared with 

Ultramarine Synthetica artificial sea water (Waterlife) and buffered with 500 µg/ ml tricine 

to pH 8, under a 12:12 light: dark cycle, at 30 �E illumination, at 20°C, without shaking.  

DNA from A. carterae was purified by phase separation with phenol: chloroform, followed 

by ethidium bromide-caesium chloride gradient centrifugation, following previous 

methodology (Barbrook and Howe 2000). The fraction corresponding to minicircle DNA was 

removed with a needle. Purified and cleaned DNA (1 μg) was treated with 10U Plasmid-Safe 

ATP-dependent DNase (Lucigen) overnight. The DNA was purified using a phenol-chloroform 

extraction retaining the aqueous phase, precipitated with ethanol and sodium acetate. The 

pellet was washed with 70% ethanol, air dried and resuspended in TE buffer, pH 8.0. 

RNA was extracted using Trizol (Invitrogen), following previous methodology (Barbrook, et 

al. 2012), treated with DNase I (Qiagen), and cleaned with an RNeasy column (Qiagen), 

following the manufacturer's instructions. The integrity of cleaned RNA samples was 

confirmed following electrophoresis on RNase-free TBE-agarose gels, and RNA samples were 

confirmed to be free of residual DNA contamination via two rounds of PCR, in the absence of 

reverse transcription, using PCR primers against consensus regions of the nuclear 18S and 

ITS1 sequences (Gachon, et al. 2013). All nucleic acid concentrations were confirmed with a 

Nanodrop spectrophotometer.  

Genome sequencing 

Isolated Amphidinium DNA was sequenced using a NextSeq500 machine (Illumina) in single-

read mode, running 150 cycles, by the sequencing facility in the Biochemistry Department, 

University of Cambridge. 10,120,479 reads of 151 bp length were generated. The quality of 

these reads was checked using Fast QC (Blankenberg, et al. 2010). Reads were then trimmed 

from base 5 to 135. Multiple de novo assemblies were made using Unicycler (Wick, et al. 

2017), utilising the trimmed sequences. Inspection of the alignments revealed there was 

contamination from A. carterae mitochondrial DNA and from Bacillus oceanisediminis. All 

assemblies of 3300 bp and smaller were examined. The Fast QC, trimming and assemblies 

were performed using the Galaxy web interface ((Blankenberg, et al. 2010). This library has 

been deposited in NCBI SRA (ID: PRJNA524783).  



Twenty-one minicircle contigs were identified through this approach, including four that 

mapped as circular. The sequence of one novel potential minicircle was confirmed by PCR 

and Sanger DNA sequencing, using a custom set of twelve gene-specific primers (Table S2, 

section 1, lines 1-16). The orthology and evolutionary conservation of minicircle sequences 

in different dinoflagellate species was assessed by tBLASTx search, with threshold evalue 1 x 

10-05, against this and all other dinoflagellate species sequenced as part of MMETSP, 

followed by verification through a reciprocal BLASTx search against nr, following previous 

methodology (Dorrell, Klinger, et al. 2017). Potential coding functions were assessed in novel 

minicircle sequences by BLAST search against the nr database; and potential tRNA 

sequences were searched for using tRNAscan-SE and Aragorn (Lowe and Eddy 1997; Laslett 

and Canback 2004; Nelson, et al. 2007). The novel minicircle sequence has been deposited in 

GenBank (ID: MK598758-MK598759), and is additionally provided in Table S1, sheet 4. 

Transcriptome sequencing 

Transcriptome sequencing was performed using adapter-ligated total cellular RNA, 

generated by incubation of 1 μg DNA-free total cellular RNA from Amphidinium carterae, 

with 1 μg of a custom RNA adapter (GCUGAUGGCGAUGAGCACUGGGUUGCAA) using T4 RNA 

ligase (Promega) as previously described (Dorrell, Hinksman, et al. 2016). The ligation 

products were cleaned with an RNeasy column (Qiagen) and eluted in 30 μl DEPC-treated 

water. 10 μl of the eluted product was used as template for synthesis with a Maxima H 

Minus double stranded cDNA synthesis kit (Thermo), per the manufacturer's instructions. 

The product of the cDNA synthesis reaction was cleaned using a MinElute cleanup column 

(Qiagen), and eluted in a further 30 μl DEPC-treated water.  

Double stranded cDNA was quantified using a Qubit fluorometer (Invitrogen) following the 

manufacturer’s instructions. A sequencing library was generated from 100 ng purified 

product using a NexteraXT tagmentation kit (Illumina). The library was sequenced over 500 

cycles using a MiSeq sequencer. Reads were trimmed of sequencing adaptors using the 

Miseq reporter version 2.0.26. Low-quality sequences (defined as all sequence within each 

read following the first residue with a Phred score below 20) were removed from each read; 

quality control statistics and paired-end mapping of each read were performed using FastQC 

and custom bash scripts (De Wit, et al. 2012). Nucleotide composition histograms and 

quality control boxplots are shown for each read in Fig. S5. The resulting library was 

estimated to contain 61.9% duplicate reads, and 4.7% singletons. This library has been 

deposited in NCBI SRA (ID PRJNA518128). 



To estimate read coverage against the Amphidinium plastid genome, a composite library 

consisting of all minicircle sequences previously reported from A. carterae CCMP1314/CCMP 

1102/6, and the complete MMETSP transcriptome cDNA libraries of A. carterae CCMP1314 

that had been cleaned of residual sequence contamination using a previously defined 

protocol (Marron, et al. 2016; Dorrell, et al. 2017) was assembled. To avoid duplication of 

plastid sequences within this library, the cDNA sequences corresponding to plastid-encoded 

proteins (Dorrell, Klinger, et al. 2017), as previously defined, were excluded from the 

MMETSP library. Each cleaned sequence paired-end read was searched against this library 

with BLASTn, and sequences that produced a top hit against a plastid minicircle sequence, 

over the complete length of the read sequence, and with a minimum threshold identity of 

95%, were mapped to the minicircle sequence.  

To assess the distribution of 5' end positions over minicircle sequences within the library, 

the paired-end read sequences were filtered for those that yielded a top hit against a 

minicircle sequence, and contained either a complete RNA adapter sequence, terminated at 

the 5' end with a region corresponding to the 3' terminal fragment of the RNA adapter, or 

terminated at the 3' end with a region corresponding to the complement of the 3' terminal 

fragment of the RNA adapter. The minimum length of RNA adapter used for this analysis 

corresponded to the last ten nt within the adapter sequence (TGGGTTGCAA), as this 

sequence was found (by BLASTn search) not to occur naturally in any of the screened 

minicircle sequence. Reads in which the RNA adapter was found in the reverse complement 

direction were reverse complemented, and each read was then trimmed at the 5' end to the 

end of the RNA adapter sequence. The trimmed reads were then searched again against the 

composite Amphidinium reference library. The position of the first residue (corresponding to 

the 5' ligation site of the transcript) and orientation (identifying sense/ antisense 

transcription) of each trimmed read that mapped to an Amphidinium minicircle over the full 

length of the read, with at least 95% identity, was recorded.  

RT-PCR experiments 

cDNA synthesis reactions were performed using Superscript II reverse transcriptase (Sigma), 

and PCRs were performed with GoTaq DNA polymerase (Invitrogen), following the 

manufacturers' instructions. Oligo-d(A) primed RT-PCR, circular RT-PCR and RNA-ligase 

mediated 5’RACE were performed according to previously defined protocols (Scotto-Lavino, 

et al. 2006; Barbrook, et al. 2012; Dorrell, Hinksman, et al. 2016). PCR products were Sanger 



sequenced using an Applied Biosystems 3730xl DNA Analyser (Department of Biochemistry, 

University of Cambridge). 

cDNA synthesis primers for sense transcripts were designed against the coding strands of 

minicircle sequence (Table S2, section 2), and for antisense transcripts against the non-

coding strands of minicircle sequence (Table S2, sections 4, 5). Each cDNA synthesis primer 

was designed so that the final eight nt of the primer sequence was not found anywhere else, 

in any orientation, on any minicircle in the A. carterae plastid (Barbrook and Howe 2000; 

Barbrook, et al. 2001; Hiller 2001; Nisbet, et al. 2004), except in the desired annealing site, 

to minimise the possibility (for example) of mis-priming of primers designed for antisense 

transcripts to sense transcripts from the same minicircle.  

To identify the full diversity of 5’ and 3’ termini associated with multi-copy and antisense 

transcripts by circular RT-PCR, five different PCR forward, and five different PCR reverse 

primers were designed against different regions of each minicircle sequence (Table S2, 

sections 2, 5). For example, for the psbA minicircle, a PCR reverse primer was designed 

specific to the 5’ end of the psbA gene, which would preferentially amplify multi-copy 

transcripts with mature 5’ termini. Three further reverse primers were designed specific to 

non-coding regions of the psbA minicircle, upstream of the psbA mature transcript 5’ 

terminus position that would preferentially amplify multi-copy transcripts containing 

extensive UTR sequence. A final reverse primer was designed specific to the 3’ end of psbA 

that would preferentially amplify transcripts with 5’ termini located within the CDS. PCRs 

were then performed using each possible combination of forward and reverse primer, to 

amplify the ligated termini of transcripts covering minicircle core regions and antisense 

transcripts. Circular PCR was performed with the same thermal cycle scheme as in Barbrook 

et al. (2012): a 10 minute initial denaturation step at 95˚C, followed by 40 cycles consisting 

of 95˚C, 45s; 55˚C, 45s; and 72˚C, 2 minutes. Each circular RT-PCR was performed three 

times, using cDNA generated from independently isolated RNA samples, to maximise the 

capture of minicircle transcripts. 

Northern blots 

Probes for each northern blot were generated using a DIG Northern Starter kit (Roche). 

Probe template sequences were generated by fusion of selected minicircle amplicons to the 

T7 promoter region of pGem-tEasy vector (Promega), following a previously established 

protocol (Dorrell, et al. 2014; Nisbet, et al. 2016). Probes were designed that were specific to 



the 5’ and 3’ UTRs of the psbA minicircle, as well as probes that were specific to the 5’ and 3’ 

ends of the psbA CDS (Table S5). For the petB/atpA minicircle, probes were designed that 

were specific to the petB CDS, the 5’ and 3’ ends of the atpA CDS and the petB 5’ UTR. To 

facilitate the direct comparison of sense and antisense transcripts, the RNA probes were 

complementary in sequence to the probes previously designed for sense transcripts from 

each minicircle, and identical RNA electrophoresis and detection conditions were used for 

sense and antisense transcript blots. 

Northern blots, using freshly isolated RNA, were made and probed following previously 

established protocols (Dorrell, et al. 2014; Dorrell, Hinksman, et al. 2016). Each northern blot 

was made using 30 µg total cellular RNA, as this has been shown to be adequate to detect 

very low abundance and multi-copy transcripts in H. triquetra (Dang and Green 2010). 

Northern probes were hybridized using a DIG labelling kit (Roche), following the 

manufacturer’s instructions. Chemiluminescence of DIG-conjugated horseradish peroxidase 

was detected in an Agilent Infinity 1260 over periods of between two minutes and twelve 

hours, dependent on the relative abundance of the corresponding transcript. Each northern 

blot experiment was performed twice using independently isolated RNA samples, and 

consistent banding patterns were identified in each case.  
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Figure legends 

Figure 1. Overview of the Amphidinium carterae plastid genome and transcriptome. 

Panel A shows all of the minicircie sequences (inferred via the presence of a core region; 

Barbrook and Howe, 2000), identified from CsCl-enriched A. carterae genomic DNA. 

Identification of orthologous sequences for each minicircle, and PCR verification of the novel 

empty minicircle sequence, are shown in fig. S1. Panel B shows an exemplar read coverage 

plot for the psbD/psbE/ORF1/psbI minicircle. This plot shows the total number of reads 

identified at each position in the minicircle sequence and is shown against a linearised 

complete minicircle sequence. Thick black arrows correspond to coding sequence, thick grey 

bars to core sequence, and thin black lines to other non-coding regions of the minicircle. 

High read coverage is observed over each coding sequence, contrasting with low read 

coverage in the core region. The intergenic region between psbD and psbE is demarcated by 

low read coverage, consistent with psbD primarily being processed as a monocistronic 

transcript in Amphidinium, whereas there is a continuous and high read coverage 

throughout the psbE-ORF1 and ORF1-psbI intergenic regions, consistent with the presence 

of polycistronic transcripts covering the psbE-ORF1-psbI region (Barbrook, et al. 2012). 

Additional read coverage plots are supplied in fig. S2. Panel C tabulates the average read 

coverage for the complete sequences of each Amphidinium plastid minicircle with verified 

coding content, along with the core regions of each minicircle, and each confirmed open 

reading frame present. 

Figure 2: Diversity of multi-copy and core-containing transcripts. Panels A and B show 

northern blots hybridised with single-stranded RNA probes complementary to different 

regions of coding strand sequences, respectively from the psbA (A) and petB/atpA (B) 

minicircles. Key bands are identified with arrows. Sizes of each band were calculated by 

comparison to a DIG-labelled RNA ladder separated on the same gel. Transcripts a-c 

represent the predominant, monocistronic mRNAs produced from each gene, as identified 

by comparison to transcript sizes estimated from previous northern blot and circular RT-PCR 

studies (Barbrook, et al. 2001; Barbrook, et al. 2012); and transcripts d-f represent lower 

abundance bands of less than one minicircle length. Corresponding circular RT-PCR 

experiments are shown in fig. S3. Panel C shows RT-PCRs employed to detect 

polyuridylylated multi-copy transcripts from the A. carterae psbA and petB/atpA minicircles. 

(Top) a putative transcript of a hypothetical minicircle is shown. The black arrow 

corresponds to all coding regions present within the minicircle, i.e. either one gene (for 



monocistronic minicircles) or multiple gene sequences (for polycistronic circles); and the 

core region as a box. A cDNA synthesis primer (grey arrow) was designed containing a 5’ 

oligo-d(A) region, and a 3’ region complementary to the 3’ UTR sequence region directly 

upstream of either the psbA, petB or atpA poly(U) site. PCRs (below) were performed using 

the cDNA and pairs of PCR primers that flank the cDNA primer annealing site. These 

reactions will specifically amplify polyuridylylated transcripts that additionally contain a 

second copy of minicircle sequence. The gel photograph (bottom) shows products as 

following. Lane 1: RT-PCR to detect polyuridylylated multi-copy transcripts from the 

petB/atpA minicircle using a cDNA synthesis primer specific to the petB poly(U) site. Lane 2: 

reverse transcriptase negative control for lane 1. Lane 3: RT-PCR to detect polyuridylylated 

multi-copy transcripts using a cDNA synthesis primer specific to the atpA poly(U) site. Lane 

4: reverse transcriptase negative control for lane 3. Lane 5: RT-PCR to detect 

polyuridylylated multi-copy transcripts from the psbA minicircle. Lane 6: reverse 

transcriptase negative control for lane 5. Lane 7: blank lane. Lane 8: reaction positive 

control, using a genomic DNA template and PCR primers internal to the psbA CDS. Lane 9-10: 

RT-PCRs using the petB and atpA poly(U) site cDNA synthesis primers, and PCR primers 

internal to the psbA CDS, confirming the minicircle specificity of cDNA synthesis. 

Figure 3. Circular RT-PCR and northern blots of psbA and petB/atpA minicircle antisense 

transcripts. Panel A shows the diversity of antisense transcript termini mapped by circular 

RT-PCR for the psbA and petB/atpA minicircles. Transcripts are displayed on transcript 

diagrams against a linearised hypothetical sense transcript of each minicircle, shown as per 

Fig. 1. Transcript sequences that terminate at the same positions as mature mRNA 

sequences are labelled with asterisks. Transcript sequences that correspond, to bands 

identified in northern blots of antisense transcripts, are labelled with brackets. Antisense 

transcript termini identified through next-generation sequencing, and 5’ RACE, are shown in 

fig. S4. Panel B shows the results of northern blots hybridised with single-stranded RNA 

probes complementary to different regions of template strand sequence to detect antisense 

transcripts, as Figs. 2A, 2B. Each antisense transcript band is labelled with a number 

corresponding to probable matching transcripts in the circular RT-PCR experiment above. 

Probes complementary to antisense transcripts covering the psbA CDS 3’ end and 3’ UTR, 

and the petB CDS and 5’ UTR, failed to yield any distinct bands, the corresponding blots are 

not shown. As the atpA 3’ CDS blot only produced very weak fluorescence, an overexposed 

blot image is shown. 



Figure 4. Absence of poly(U) tails from antisense transcripts. This gel photograph shows the 

result of a series of RT-PCRs to test for poly(U) tails on antisense transcripts of the psbA and 

petB/atpA minicircles. Lanes 1, 13: blank lane. Lanes 2-3, 7-8: RT-PCRs performed with an 

oligo-d(A) primer for cDNA synthesis, and PCR with the same oligo-d(A) primer and a primer 

with the same sequence as the template strand of the psbA CDS (2) and UTR (3), and the 

petB (7) and atpA CDS (8), demonstrating the absence of polyuridylylated antisense 

transcripts extending over these regions. Lanes 4, 9-10: RT-PCR performed with oligo-d(A) 

primed cDNA as before, and PCR with oligo-d(A) and primers with the same sequence as the 

coding strands of the psbA (4), petB (9) and atpA CDS (10), confirming the presence of 

polyuridylylated sense transcripts in the RNA sample. Lanes 5, 6, 11, 12: positive controls for 

the presence of antisense transcripts over the psbA CDS (5) and UTR (6), and the petB (11) 

and atpA CDS (12), using a gene-specific cDNA synthesis and PCR primer with the same 

sequence as the coding strands of minicircle sequence, and the same template strand PCR 

primer as used in the corresponding oligo-d(A) primed PCR for each reaction. 

Figure S1. Organisation and evolutionary conservation of Amphidinium carterae plastid 

minicircles. Panel A shows a heatmap of which orthologues of different A. carterae plastid 

gene and empty minicircle sequences could be identified in previously assembled 

dinoflagellate transcriptome datasets from the Marine Microbial Eukaryote Transcriptome 

Sequencing Project (Dorrell, Klinger, et al. 2017), by tBLASTx search with threshold evalue 1 

x 10-05. Cells are shaded in grey if an orthologue was detected; and black if an orthologue 

with a poly(U) tail, confirming plastid origin, was detected. Species are arranged per the 

topology constructed in (Dorrell, Klinger, et al. 2017). Of note, of the five empty minicircle 

queries, only the novel minicircle 6 was detected in the A. carterae MMETSP transcriptome, 

and none was identified to have orthologues in other dinoflagellate species. Panel B shows 

(left) a PCR gel photo, confirming the presence of three overlapping amplicons from the 

novel minicircle 6 [lane 1: primers forward 1 and reverse 4; lane 2: primers forward 2 and 

reverse 1; lane 3: primers forward 6 and reverse 3; as defined in Table S2); and (right) an 

alignment of the contained open reading frame sequence translation, and its orthologues 

from Amphidinium carterae sp. CS-21 and Amphidinium massartii. 

Figure S2. Read coverage maps for Amphidinium carterae plastid minicircles. This figure 

shows the number of transcripts mapped to each position in each identified A. carterae 

plastid minicircle with defined coding content, shown as per Fig. 1B. 



Figure S3 Circular RT-PCR of core-containing minicircle transcripts. Panel A shows a 

diagram of the circular RT-PCR protocol used to map the termini of transcripts from the A. 

carterae psbA and petB/atpA minicircles. A heterogeneous population of transcripts is 

treated with T4 RNA ligase, generating circularised RNA. Only transcripts that have 

undergone prior 5’ cleavage are ligated. The circular RNA is reverse transcribed using cDNA 

synthesis primers specific to minicircle core regions. PCRs are then performed using the 

cDNA preparations using different combinations of primers, to identify the ligated end of 

transcript sequences. Panel B shows a transcript diagram of the diversity of multi-copy 

transcripts and core-containing transcripts of less than one minicircle length mapped for 

each minicircle. Transcripts are shown to scale against a hypothetical linearised transcript 

sequence for each minicircle. The consensus terminus positions associated with 

monocistronic polyuridylylated psbA, petB and atpA transcripts are additionally shown, and 

the boundary positions of each core region are shown with dashed vertical lines. The 5’ ends 

of two multi-copy transcripts from the petB/atpA minicircle that are similar to the consensus 

5’ end position of monocistronic atpA mRNA are labelled with asterisks. 

Figure S4. Identification of plastid antisense transcripts by RNA ligation. Panel A shows a 

schematic diagram of the protocol used for generation of the A. carterae cDNA library for 

next generation sequencing, and for 5' RACE. (i) Total cellular RNA is ligated to a custom RNA 

adapter sequence using T4 RNA ligase (Dorrell, Hinksman, et al. 2016). As the RNA adapter 

used for the initial ligation is non-palindromic, its orientation relative to the sequence of the 

transcript can be used to identify the orientation of the transcript (forward or reverse) 

relative to the corresponding minicircle sequence. (ii, iii) The adapter-ligated RNA is used as 

a coding for cDNA synthesis, generating cDNA containing the adapter sequences at 

transcript terminus points, and is then amplified by PCR. For next-generation sequencing, a 

random hexamer cDNA synthesis primer is used followed by random PCR amplification, to 

generate as diverse a range of transcripts as possible. For 5' RACE, the cDNA synthesis 

primer corresponds specifically to the minicircle coding strand, and thus should 

preferentially amplify antisense transcripts. Nested rounds of PCR are then performed using 

a primer specific to the non-coding strand of the minicircle, and a primer corresponding to 

the 5' RNA adapter, thus generating products containing an RNA adapter ligated to the 5' 

end of a minicircle antisense transcript. Panel B shows (i) the total number of transcript 5' 

ends, defined as reads containing at least the final 8 nt of the adaptor sequence either at the 

start or the end of the reads sequence, identified from the next generation sequencing 

library. The transcript 5' ends are divided into ends that appear to correspond to sense or 



antisense transcripts based on their orientation, with the majority originating from sense 

transcripts. An exemplar map of 5' transcript termini, for the Amphidinium 23S minicircle, is 

shown in (ii). Notably, sense and antisense transcript termini do not occur at corresponding 

locations, indicating that they derive from separate processing events. Panel C shows an 

exemplar RNA ligase-mediated 5’ RACE amplification of an Amphidinium plastid antisense 

transcript. This transcript end is ligated to an RNA adapter of known sequence (i) allowing 

the identification of the transcript relative to the genomic sequence. Alignment of the 

transcript end region (ii) against the genomic atpA sequence reveals a region identical in 

sequence to the atpA template strand, followed immediately by a sequence that aligns with 

the 3’ end of the RNA adapter used. This confirms that the transcript terminus identified is a 

5’ end of a minicircle antisense transcript.  

Figure. S5. Quality control statistics for the Amphidinium carterae RNA sequencing library. 

This figure shows (A) nucleotide composition histograms and (B) QC score boxplots for the 

forward (i) and reverse (ii) adaptor reads of each paired-end sequence pair. Both libraries 

show high read quality (median QC score ~40) for > 120 bp from the read 5' end. Scores are 

plotted using the NGS:QC pipeline implemented into the Galaxy server (Blankenberg, et al. 

2010). 

Table S1. Tabulated read coverage for Amphidinium carterae plastid minicircles. Sheet 1 

provides fasta format sequences of the Amphidinium minicircles identified through next-

generation sequencing of CsCl-purified genomic DNA. Sheet 2 provides an overview of the 

number of reads from the adaptor-ligated Amphidinium RNA library mapped to minicircle 

sequence. Sheet 3 provides detailed read coverage values for RNA sequence data, for each 

residue in each minicircle sequence. Each minicircle sequence is given with the core region 

corresponding to residues 1-280. Sheet 4 provides GenBank flatfile form sequences of two 

variants of novel minicircle 6, assembled by PCR. 

Table S2. Primers used for RT-PCR analysis. The annealing position of each primer is given, 

relative to a linearised sequence of the minicircle, in which the core region corresponds to 

residues 1-280. 

Table S3. Tabulated circular RT-PCR sequences. This table provides 5' and 3' terminus 

positions for core-containing and antisense transcripts identified by circular RT-PCR. The 

terminus positions of each transcript, and the primers used for PCR amplification of the 

transcript, are given corresponding to a linearised sequence of the minicircle, in which the 

core region corresponds to residues 1-280. For reference, the positions of each coding 



sequence, as well as the intervals of residues over which mature mRNA 5' ends and poly(U) 

sites have been identified in previous circular RT-PCR studies (Barbrook, et al. 2012), are 

supplied. 

Table S4. Tabulated transcript 5' ends identified by next-generation sequencing. This table 

shows the position and orientation of 5' end termini within the adaptor-ligated Amphidinium 

RNA library against each published minicircle sequence. Sheet 1 provides tabulated BLAST 

outputs of each of the 5' end sequences identified. Sheet 2 provides an overview of the 

number and orientation of 5' termini mapped to minicircle. Sheet 3 tabulates the number 

and orientation of 5' end termini identified for each residue in each minicircle sequence. 

Each minicircle sequence is given with the core region corresponding to residues 1-280. 

Table S5. Tabulated northern probes. This table provides a linearised sequence of the T7 

arm of the pGem-tEasy vector, and sequences of the template strand regions used for the 

generation of northern probes against sense transcripts, and the non-coding strand regions 

used for the generation of northern probes against antisense transcripts. The sequence 

intervals covered by each probe are given corresponding to a linearised sequence of the 

minicircle, in which the core region corresponds to residues 1-280. 
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ii) Alignment of A. carterae atpA gene and antisense 5’ RACE products  
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A 

B 
Minicircle Sense Antisense % sense 
Plastid_psbD-psbE-ORF1-psbI 20 17 45.9 
Plastid_petB-atpA 10 2 16.7 
Plastid_23S 374 34 8.3 
Plastid_psaB 5 3 37.5 
Plastid_psbA 11 2 15.4 
Plastid_petD-ORF2-ORF3-ORF4 4 4 50.0 
Plastid_psbC 0 3 100.0 
Plastid_psbB 6 0 0 
Plastid_atpB 5 2 28.6 
Plastid_16S 448 0 0 
Empty minicircle 110 4 0 0 
Empty minicircle 3 1 0 0 
Total 888 67 7.0 
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Table S1. Tabulated read coverage for Amphidinium carterae plastid minicircles. 
Sheet 1 provides fasta format sequences of the Amphidinium minicircles identified through next-generation sequencing of CsCl-purified genomic DNA. 
Sheet 2 provides an overview of the number of reads from the adaptor-ligated Amphidinium RNA library mapped to minicircle sequence. 
Sheet 3 provides detailed read coverage values for RNA sequence data, for each residue in each minicircle sequence. Each minicircle sequence is given with the core region corresponding to residues 1-280. 
Sheet 4 provides GenBank flatfile form sequences of two variants of novel minicircle 6, assembled by PCR.



Table S2. Primers used for RT-PCR analysis. The annealing position of each primer is given, relative to a linearised sequence of the minicircle, in which the core region corresponds to residues 1-280.

1. PCR of novel minicircle 6

Name Sequence Annealing site
Forward_1 AAGGTAGAGAACATCAAACAGG 364 F
Forward_2 GTCTACCGAGTACCCACCC 724 F
Forward_3 GAGAGTCCCGTCAAATGG 1138 F
Forward_4 CTCGTCAGGCTTGCATC 1491 F
Forward_5 GTGGTACTTGTTCTATGCGTTG 1904 F
Forward_6 CACCATAGGGACATGAATGAG 2085 F
Reverse_1 CACGACTGTGGAATGCAC 103 R
Reverse_2 CGCACTCCATCGAACC 495 R
Reverse_3 ACGCGGTAACATTGACC 866 R
Reverse_4 TACGGAGGAGGAAACTGG 1443 R
Reverse_5 TGGTTGGATTACAGCCG 1585 R
Reverse_6 AAGTGTAAGGAGAAGTAGGGC 1862 R

2. Circular RT-PCR of multi-copy transcripts

Minicircle core-specific cDNA primer Annealing site
psbA AGTCTCCCGATTGTCTATTCTC 41 R

PCR forward primers Annealing site Position PCR reverse primers Annealing site Position
1 CGAGTCAGAGGCATCAAAC 228 F Core CTTTAGACTGCGGTGTGAAC 563 R 5' UTR
2 TACATTGAGTAGGCATCTTTAATAGC 512 F 5' UTR AGTTAGAGCGAATAAGGCTTG 858 R CDS 5' end
3 CTGGGGTTCTTTCGTTCAAAC 860 F CDS 5' end GATACCAATTACAGGCCAAGC 1670 R CDS 3' end
4 ACGCTCATAACTTCCCTCTTG 1825 F CDS 3' end ATCGTTAATCAGAAAGCCTAGTC 1918 R 3' UTR
5 CCTCCTACCGAAAGTCAATTC 2238 F 3' UTR ATTGACTTTCGGTAGGAGGC 2256 R 3' UTR

Minicircle positive control cDNA primer Annealing site Position core-specific cDNA primer Annealing site Position
petB/ atpA GCATTGCTGTGGAATAGAC 2417 R CCTTTCCGTATCCTTCATTCG 2679 R

PCR forward primers Annealing site PCR reverse primers Annealing site
1 GAAAATCCAGGTCATATCATAGGAG 133 F Core GCAACTCAAGACGCTCTTCAC 498 R petB CDS 5' end
2 GCAGACGATATCCTCTCTAAG 507 F petB CDS 5' end CAAACACTGTACCCAACGAAG 963 R petB CDS 3' end
3 CCTTCTCCTTACTCATTTCCTAATG 1058 F petB CDS 3' end ACAAGGCCATATACGACATC 1276 R atpA CDS 5' end
4 TCAGTCTGTCTGCGAACCAC 1529 F atpA CDS 5' end CTTCTGACCCACAGGGACAT 1715 R atpA CDS 3' end
5 GGTCTTCTTGGGTTATTTCC 2480 F atpA CDS 3' end CCTTTCCGTATCCTTCATTCG 2679 R atpA 3' UTR

control GGTCTTCTTGGGTTATTTCC 2480 F atpA CDS 3' end ACAAGGCCATATACGACATC 1276 R atpA CDS 5' end

3. RT-PCR to detect polyuridylylated multi-copy transcripts

Gene cDNA primer Annealing site
psbA AAAAAAARATAAAGGGG 1870/ 1872 R
petB AAAAAAAWAAGAATAGAAGT 1123/ 1226 R
atpA AAAAAAAAAAAAAAAAAAATATACAGAAC2592 R

Gene PCR forward primer Annealing site PCR reverse primer Annealing site
psbA CAAGCCTTATTCGCTCTAACT 838 F ATCGTTAATCAGAAAGCCTAGTC 1918 R
petB GCAGACGATATCCTCTCTAAG 507 F ACAAGGCCATATACGACATC 1276 R
atpA TCAGTCTGTCTGCGAACCAC 1529 F CCTTTCCGTATCCTTCATTCG 2679 R

4. 5' RACE of antisense transcripts

RNA adapter GCUGAUGGCGAUGAGCACUGGGUUGCAATranscript cDNA primer Annealing site
Adapter primer 1GCTGATGGCGATAGC psbA antisense CAAGCCTTATTCGCTCTAACT 838 F
Adapter primer 2GATGAGCACTGGGTTGC atpA antisense TCAGTCTGTCTGCGAACCAC 1529 F

Gene Gene-specific PCR primer 1 Annealing site Genes-specific PCR primer 2 Annealing site
psbA CTGGGGTTCTTTCGTTCAAAC 860 F CTTCTAACGCAATCGGTGTCC 1075 F
atpA CAGCGTGAACTAATTATTGGTG 1599 F ACGAGAAGGTTCTATCCGTCTATG 1675 F

5. Circular RT-PCR of antisense transcripts

psbA Annealing site Position petB/ atpA Annealing site Position
cDNA synthesis primers

1 CGAGTCAGAGGCATCAAAC 228 F 5' UTR GCAGACGATATCCTCTCTAAG 507 F petB CDS 5' end
2 CTGGGGTTCTTTCGTTCAAAC 860 F CDS 5' end ACGAGAAGGTTCTATCCGTCTATG 1675 F atpA CDS 5' end
3 CCTCTCTTGGTGTTGCTACTATG 1678 F CDS 3' end GTAGGTATCTCGGTTACACG 2190 F atpA CDS 3' end
4 GACTAGGCTTTCTGATTAACGAT 1896 F 3' UTR CGAATGAAGGATACGGAAAGG 2659 F atpA 3' UTR

PCR forward primers
1 AGTCTCCCGATTGTCTATTCTC 41 R core GCAACTCAAGACGCTCTTCAC 498 R petB CDS 5' end
2 AGTTAGAGCGAATAAGGCTTG 858 R CDS 5' end CACCAATAATTAGTTCACGCTG 1620 R atpA CDS 5' end
3 GATACCAATTACAGGCCAAGC 1670 R CDS 3' end GCATTGCTGTGGAATAGAC 2417 R atpA CDS 3' end
4 ATCGTTAATCAGAAAGCCTAGTC 1918 R 3' UTR TCGTTCAACCACACTTTATACAGAAC 2607 R atpA 3' UTR

PCR reverse primers
1 TACATTGAGTAGGCATCTTTAATAGC 512 F 5' UTR ATCATCCAAGCGGCAACT 588 F petB CDS 5' end
2 CTTCTAACGCAATCGGTGTCC 1075 F CDS 5' end TCCCTGTGGGTCAGAAG 1699 F atpA CDS 5' end
3 ACGCTCATAACTTCCCTCTTG 1825 F CDS 3' end GGTCTTCTTGGGTTATTTCC 2480 F atpA CDS 3' end
4 CCTCCTACCGAAAGTCAATTC 2238 F 3' UTR GAAAATCCAGGTCATATCATAGGAG 133 F core

6. RT-PCR to detect polyuridylylated antisense transcripts

oligo-d(A) cDNA synthesis primer GGGACTAGTCTCGAGAAAAAAAAAAAAAAAAAA

Amplicon PCR gene-specific primer Annealing site Gene-specific cDNA synthesis primer Annealing site
Antisense psbA-1GCTCGTGCATTACCTCGATAC 1821 R CAAGCCTTATTCGCTCTAACT 838 F
Antisense psbA-2CTTTAGACTGCGGTGTGAAC 563 R GACTAGGCTTTCTGATTAACGAT 1896 F
Antisense petB AAGGTGTGAGCCTGATAGAAC 1033 R GCAGACGATATCCTCTCTAAG 507 F
Antisense atpA CTTCTGACCCACAGGGACAT 1715 R ACGAGAAGGTTCTATCCGTCTATG 1675 F
Sense psbA CAAGCCTTATTCGCTCTAACT 838 F n/a
Sense petB GCAGACGATATCCTCTCTAAG 507 F n/a
Sense atpA ACGAGAAGGTTCTATCCGTCTATG 1675 F n/a



Table S3. Tabulated circular RT-PCR sequences. This table provides 5' and 3' terminus positions for core-containing and antisense transcripts identified by circular RT-PCR. 
The terminus positions of each transcript, and the primers used for PCR amplification of the transcript, are given corresponding to a linearised sequence of the minicircle, in which the core region corresponds to residues 1-280. 
For reference, the positions of each coding sequence, as well as the intervals of residues over which mature mRNA 5' ends and poly(U) sites have been identified in previous circular RT-PCR studies (Barbrook, et al. 2012), are supplied.

1. Core-containing psbA transcripts
Minicircle length 2311 Core 1-281

5' end 3' end mRNA 5' endpoly(U) site
psbA 834 1856 600-829 1870-1872

5' end 3' end R primer F primer Poly(U) Size Notes

multi-copy transcript 1 1407 2228 (2) 1670 R 1825 F N 3132

core-containing transcript 1 1310 108 (2) 1670 R 2238 F N 1109
core-containing transcript 2 1347 146 (2) 1670 R 1825 F N 1110
core-containing transcript 3 1371 67 (2) 1918 R 2238 F N 1007
core-containing transcript 4 1416 257 (2) 1670 R 2238 F N 1152
core-containing transcript 5 1416 257 (2) 1669 R 1825 F N 1152
core-containing transcript 6 1430 202 (2) 1670 R 2238 F N 1083
core-containing transcript 7 1542 72 (2) 1670 R 2238 F N 841
core-containing transcript 8 1549 76 (2) 1670 R 1825 F N 838
core-containing transcript 9 1806 201 (2) 1918 R 2238 F N 706
core-containing transcript 10 1843 225 (2) 1918 R 2238 F N 693
core-containing transcript 11 2127 328 (2) 2256 R 228 F N 512
core-containing transcript 12 2172 262 (2) 2256 R 228 F N 401
core-containing transcript 13 2188 262 (2) 2256 R 228 F N 385

2. Core-containing petB/atpA transcripts
Minicircle length 2713 Core 1-281

5' end 3' end mRNA 5' endpoly(U) site
petB 456 1115 310-424 1122-1126
atpA 1206 2582 1080-1088 2591

5' end 3' end R primer F primer Poly(U) Size Notes
atpA mRNA 1 1086 2591 1276 R 2480 F U24 1529
atpA mRNA 2 1086 2591 1276 R 2480 F U32 1537
atpA mRNA 3 1087 2591 1276 R 2480 F U26 1530
atpA mRNA 4 1087 2591 1276 R 2480 F U35 1539
atpA mRNA 5 1089 2591 1276 R 2480 F U26 1528

multi-copy transcript 1 501 1276 (2) 963 R 1058 F N 3488
multi-copy transcript 2 1080 2246 (2) 1276 R 1529 F N 3879 5' end similar to mature mRNA 5' end position
multi-copy transcript 3 1085 1861 (2) 1276 R 1529 F N 3489 5' end similar to mature mRNA 5' end position
multi-copy transcript 4 1151 1919 (2) 1276 R 1529 F N 3481
multi-copy transcript 5 1151 1919 (2) 1276 R 1529 F N 3481

core-containing transcript 1 1157 277 (2) 1276 R 2480 F N 1833
core-containing transcript 2 1224 76 (2) 1276 R 2480 F N 1565
core-containing transcript 3 1224 77 (2) 1276 R 2480 F N 1566
core-containing transcript 4 1461 14 (2) 1715 R 2480 F N 1266
core-containing transcript 5 1483 603 (2) 1715 R 2480 F N 1833
core-containing transcript 6 1526 295 (2) 1715 R 2480 F N 1482
core-containing transcript 7 1562 74 (2) 1715 R 2480 F N 1225

3. Antisense psbA transcripts
Minicircle length 2311 Core 1-281

5' end 3' end mRNA 5' endpoly(U) site
psbA 834 1856 600-829 1870-1872

5' end 3' end cDNA primer R primer F primer Poly(U) Size Notes

antisense transcript 1 146 (2) 1347 1896 F 2238 F 1670 R N 1110
antisense transcript 2 72 (2) 1542 1896 F 2238 F 1670 R N 841
antisense transcript 3 1868 1071 1678 F 1825 F 1670 R N 797
antisense transcript 4 1867 1520 1678 F 1825 F 1670 R N 347
antisense transcript 5 1678 544 860 F 1075 F 858 R N 1134
antisense transcript 6 1196 715 860 F 1075 F 858 R N 481 3' end similar to mature mRNA 5' end position
antisense transcript 7 1188 765 860 F 1075 F 858 R N 423 3' end similar to mature mRNA 5' end position
antisense transcript 8 1092 168 860 F 860 F 858 R N 924
antisense transcript 9 916 168 860 F 860 F 858 R N 748

4. Antisense petB/ atpA transcripts
Minicircle length 2713 Core 1-281

5' end 3' end mRNA 5' endpoly(U) site
petB 456 1115 310-424 1122-1126
atpA 1206 2582 1081-1088 2591

5' end 3' end cDNA primer R primer F primer Poly(U) Size Notes

antisense transcript 1 832 (2) 2437 507 F 588 F 2607 R N 1108
antisense transcript 2 301 (2) 2086 2659 F 133 F 2417 R N 928
antisense transcript 3 294 (2) 2084 2659 F 133 F 2417 R N 923
antisense transcript 4 204 (2) 1218 2659 F 133 F 1620 R N 1699
antisense transcript 5 192 (2) 1677 2659 F 133 F 2417 R N 1228
antisense transcript 6 2040 1532 1675 F 1699 F 1620 R N 508
antisense transcript 7 1770 1509 1675 F 1699 F 1620 R N 261
antisense transcript 9 916 168 860 F 860 F 858 R N 706



Table S4. Tabulated transcript 5' ends identified by next-generation sequencing. 
This table shows the position and orientation of 5' end termini within the adaptor-ligated Amphidinium RNA library against each published minicircle sequence. Each minicircle sequence is given with the core region corresponding to residues 1-280.
Sheet 1 provides tabulated BLAST outputs of each of the 5' end sequences identified. 
Sheet 2 provides an overview of the number and orientation of 5' termini mapped to minicircle.
Sheet 3 tabulates the number and orientation of 5' end termini identified for each residue in each minicircle sequence. 



Table S5. Tabulated northern probes. This table provides a linearised sequence of the T7 arm of the pGem-tEasy vector, and sequences of the template strand regions used for the generation of northern probes against sense transcripts, and the non-coding strand regions used for the generation of northern probes against antisense transcripts. 
The sequence intervals covered by each probe are given corresponding to a linearised sequence of the minicircle, in which the core region corresponds to residues 1-280.

Probe Start End Sequence

TAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCCGCGGGATT

psbA
5' UTR Sense 852 510 AGCGAATAAGGCTTGTCATAATAGATATGGAAAAAGGTTTACGCTGGCCTCACTAACGAGAGTTCGTCTTCTTACCGAGGCACCGAGGTACCAGGAAGGTAAACGCGGATACACCATTACAGCTCACCACTCGACTACTTGCCTACCCCTGCCACTCCACCGCCACAAGCACTCCGTAAGACGGGGACTGAATACACAGACCATTTGATAGGATCCCCGAAGGGAGGTAGGGTCTCAGGTTACCAGCGTGGTTTCTGGGCCACATGACCTGATTGTTGGACCTTTCTACCTTTAGACTGCGGTGTGAACCCTACAAGCTATTAAAGATGCCTACTCAATGTAA
5' CDS Sense 1077 838 AAGAAGGAATAACAGCACCAGAGATGATGTTGTTACCATAGATAAGGGAACCTGCAACTGGCTCACGGATACCATCAATATCGACTGCAGGAGCAAGGAAGAAAGCAGTGATATAAGCTACGGTAGCAAGGGAGAGAAGTGGGAAGACGAGGAGACCGAACCAACCGATATAAAGACGGTTAGAGGAAGAAGTGATTGTTTGAACGAAAGAACCCCAGGAGTTAGAGCGAATAAGGCTTG
3' CDS Sense 1845 1616 CAAGAGGGAAGTTATGAGCGTTACGCTCGTGCATTACCTCGATACCAAGATCAGCACGGTTGAGGATATCAGCCCAAGAGTTAATGTAGTGACCAGATTCGTCAAGAATAGACTGGTTGAAGTTGAAACCGTTAAGGTTGAATGCCATAGTAGCAACACCAAGAGAGGTGAACCAGATACCAATTACAGGCCAAGCTGCAAGGAAGAAGTGAAGAGAACGGGAGTTGTTG
3' UTR Sense 2256 1896 ATTGACTTTCGGTAGGAGGCTCAAAGAAGGAAAGGCACTATTACCTAACCAGAGATAACTACAAGCGGAGATTCCAAGCCTTTATGGACTCATTCTAGCATCTAAGAGGTGTTGCAGGATAACCATACAACAGTTGTACCTGTTTACCCGGGTATTGATACGTCGCCACAACGATCTCTACTTAGGTAGGTAGGTCAATACGTCGTTCGAAAGGCGCCCGAAGGGCCTACTGTGAGTTTAATTCATCGTTCAAACGTTCCCAATAATAAGGAAGGTAATCTAATCGTTCTTAATCTTCGTGCATTATTACTAGCCATCGTTCTTAATAATATTACATCATCGTTAATCAGAAAGCCTAGTC
5' UTR Antisense 510 852 TTACATTGAGTAGGCATCTTTAATAGCTTGTAGGGTTCACACCGCAGTCTAAAGGTAGAAAGGTCCAACAATCAGGTCATGTGGCCCAGAAACCACGCTGGTAACCTGAGACCCTACCTCCCTTCGGGGATCCTATCAAATGGTCTGTGTATTCAGTCCCCGTCTTACGGAGTGCTTGTGGCGGTGGAGTGGCAGGGGTAGGCAAGTAGTCGAGTGGTGAGCTGTAATGGTGTATCCGCGTTTACCTTCCTGGTACCTCGGTGCCTCGGTAAGAAGACGAACTCTCGTTAGTGAGGCCAGCGTAAACCTTTTTCCATATCTATTATGACAAGCCTTATTCGCT
5' CDS Antisense 838 1077 CAAGCCTTATTCGCTCTAACTCCTGGGGTTCTTTCGTTCAAACAATCACTTCTTCCTCTAACCGTCTTTATATCGGTTGGTTCGGTCTCCTCGTCTTCCCACTTCTCTCCCTTGCTACCGTAGCTTATATCACTGCTTTCTTCCTTGCTCCTGCAGTCGATATTGATGGTATCCGTGAGCCAGTTGCAGGTTCCCTTATCTATGGTAACAACATCATCTCTGGTGCTGTTATTCCTTCTT
3' CDS Antisense 1616 1845 CAACAACTCCCGTTCTCTTCACTTCTTCCTTGCAGCTTGGCCTGTAATTGGTATCTGGTTCACCTCTCTTGGTGTTGCTACTATGGCATTCAACCTTAACGGTTTCAACTTCAACCAGTCTATTCTTGACGAATCTGGTCACTACATTAACTCTTGGGCTGATATCCTCAACCGTGCTGATCTTGGTATCGAGGTAATGCACGAGCGTAACGCTCATAACTTCCCTCTTG
3' UTR Antisense 1896 2256 GACTAGGCTTTCTGATTAACGATGATGTAATATTATTAAGAACGATGGCTAGTAATAATGCACGAAGATTAAGAACGATTAGATTACCTTCCTTATTATTGGGAACGTTTGAACGATGAATTAAACTCACAGTAGGCCCTTCGGGCGCCTTTCGAACGACGTATTGACCTACCTACCTAAGTAGAGATCGTTGTGGCGACGTATCAATACCCGGGTAAACAGGTACAACTGTTGTATGGTTATCCTGCAACACCTCTTAGATGCTAGAATGAGTCCATAAAGGCTTGGAATCTCCGCTTGTAGTTATCTCTGGTTAGGTAATAGTGCCTTTCCTTCTTTGAGCCTCCTACCGAAAGTCAAT

petB/ atpA
5' UTR Sense 498 206 GCAACTCAAGACGCTCTTCACACCAATCGTAAATGAAACCCATGTAGAGAATGCTTGTTAACGAATAGGCATGAGGGTTCCTGGTATACTTCTGGCCTAACCAGGAGGCATTTGTTAATTAATTCGAGACCATATTGTATCTCTCGACTCCCAACAGTGACTCTGCACTCATGGTACTGTGTTGATGGGGAGCCTTTCATCTTATCTTTCTATTAAGTGTCGTTTCTACATTTATCTAGTCGTTCATTTGTCTTTCAAGCTCTAGTCCTTAATGGAGACTTGTGAGATCGGGA
petB Sense 961 504 AACACTGTACCCAACGAAGGGAACACGTTATTGAGAGCCTCAGGAGTCGCAGTTACGATCTTGCACGCCCAATAGCCAACCTGATCCCATGGTAGGGAGTAACCTGTGACACCGAAGGACACAGTACAGATGGCTAGGATAACGCCGGAGATCCATGTGAGTTCCCTTGGCTTCTTGAAACCCGCAGTCAGATAAACACGACTAACGTGAAGAAGTAGGACGAGGACCATCAAGCCAGAAGAGGTACGGTGGATGGATCGAACCAACCAACCGAATGATACCTCATTTGTGATATACGTGACACTCGAGAGTGCCTCAACCACGTTAGGCCTGTAGTAGAGAGTCATGGCAAAACCAGTTGCCGCTTGGATGATGAAACATGTCAACACGATACCGCCGAAGCAATAGAAGATGTTAACATGAGAAGGAACGAACTTAGAGAGGATATCGTCTGCAAT
atpA 5' Sense 1715 1531 CTTCTGACCCACAGGGACATAGACGGATAGAACCTTCTCGTACTTAAGGTTAACGATGGTATCGAGGCAAATAGAGGTCTTACCGGTCTGACGATCACCAATAATTAGTTCACGCTGACCTCGACCAATTGGAATCATTGCATCGATTGATACGATACCAGTAGCGAGTGGTTCGCAGACAGACT
atpA 3' Sense 2525 2190 TAGGAAACACCAAGACGGTAGGCTAAGGAAATAACCCAAGAAGACCTTCACAAGAGAGTCAGATGGAATCCTAGCCAATACACCAGAACCTGCAAGCGATAGTACTGCGCATTGCTGTGGAATAGACATTGGAGATGCAACATCCTGCTTAAGAACCTCACGAATCCTCCTACCATTAGCTAGAGCCCTCGCTGTGTCCTCACCGAGATCAGAGGCAAACTGAGAGAAAGCCTCCAACTCAACGAACTGTGCAAGAGTAAGCTTAAGTCGACCCGCAACCATCTTCATCTGGTCCTGTTGTGCCGCAGAACCGACACGTGTAACCGAGATACCTAC
5' UTR Antisense 206 498 TCCCGATCTCACAAGTCTCCATTAAGGACTAGAGCTTGAAAGACAAATGAACGACTAGATAAATGTAGAAACGACACTTAATAGAAAGATAAGATGAAAGGCTCCCCATCAACACAGTACCATGAGTGCAGAGTCACTGTTGGGAGTCGAGAGATACAATATGGTCTCGAATTAATTAACAAATGCCTCCTGGTTAGGCCAGAAGTATACCAGGAACCCTCATGCCTATTCGTTAACAAGCATTCTCTACATGGGTTTCATTTACGATTGGTGTGAAGAGCGTCTTGAGTTGC
petB Antisense 504 961 ATTGCAGACGATATCCTCTCTAAGTTCGTTCCTTCTCATGTTAACATCTTCTATTGCTTCGGCGGTATCGTGTTGACATGTTTCATCATCCAAGCGGCAACTGGTTTTGCCATGACTCTCTACTACAGGCCTAACGTGGTTGAGGCACTCTCGAGTGTCACGTATATCACAAATGAGGTATCATTCGGTTGGTTGGTTCGATCCATCCACCGTACCTCTTCTGGCTTGATGGTCCTCGTCCTACTTCTTCACGTTAGTCGTGTTTATCTGACTGCGGGTTTCAAGAAGCCAAGGGAACTCACATGGATCTCCGGCGTTATCCTAGCCATCTGTACTGTGTCCTTCGGTGTCACAGGTTACTCCCTACCATGGGATCAGGTTGGCTATTGGGCGTGCAAGATCGTAACTGCGACTCCTGAGGCTCTCAATAACGTGTTCCCTTCGTTGGGTACAGTGTT
atpA 5' Antisense 1531 1715 AGTCTGTCTGCGAACCACTCGCTACTGGTATCGTATCAATCGATGCAATGATTCCAATTGGTCGAGGTCAGCGTGAACTAATTATTGGTGATCGTCAGACCGGTAAGACCTCTATTTGCCTCGATACCATCGTTAACCTTAAGTACGAGAAGGTTCTATCCGTCTATGTCCCTGTGGGTCAGAAG
atpA 3' Antisense 2190 2525 GTAGGTATCTCGGTTACACGTGTCGGTTCTGCGGCACAACAGGACCAGATGAAGATGGTTGCGGGTCGACTTAAGCTTACTCTTGCACAGTTCGTTGAGTTGGAGGCTTTCTCTCAGTTTGCCTCTGATCTCGGTGAGGACACAGCGAGGGCTCTAGCTAATGGTAGGAGGATTCGTGAGGTTCTTAAGCAGGATGTTGCATCTCCAATGTCTATTCCACAGCAATGCGCAGTACTATCGCTTGCAGGTTCTGGTGTATTGGCTAGGATTCCATCTGACTCTCTTGTGAAGGTCTTCTTGGGTTATTTCCTTAGCCTACCGTCTTGGTGTTTCCTA

T7 arm of probe sequence



Table S5. Tabulated northern probes. This table provides a linearised sequence of the T7 arm of the pGem-tEasy vector, and sequences of the template strand regions used for the generation of northern probes against sense transcripts, and the non-coding strand regions used for the generation of northern probes against antisense transcripts. 

AGCGAATAAGGCTTGTCATAATAGATATGGAAAAAGGTTTACGCTGGCCTCACTAACGAGAGTTCGTCTTCTTACCGAGGCACCGAGGTACCAGGAAGGTAAACGCGGATACACCATTACAGCTCACCACTCGACTACTTGCCTACCCCTGCCACTCCACCGCCACAAGCACTCCGTAAGACGGGGACTGAATACACAGACCATTTGATAGGATCCCCGAAGGGAGGTAGGGTCTCAGGTTACCAGCGTGGTTTCTGGGCCACATGACCTGATTGTTGGACCTTTCTACCTTTAGACTGCGGTGTGAACCCTACAAGCTATTAAAGATGCCTACTCAATGTAA
AAGAAGGAATAACAGCACCAGAGATGATGTTGTTACCATAGATAAGGGAACCTGCAACTGGCTCACGGATACCATCAATATCGACTGCAGGAGCAAGGAAGAAAGCAGTGATATAAGCTACGGTAGCAAGGGAGAGAAGTGGGAAGACGAGGAGACCGAACCAACCGATATAAAGACGGTTAGAGGAAGAAGTGATTGTTTGAACGAAAGAACCCCAGGAGTTAGAGCGAATAAGGCTTG
CAAGAGGGAAGTTATGAGCGTTACGCTCGTGCATTACCTCGATACCAAGATCAGCACGGTTGAGGATATCAGCCCAAGAGTTAATGTAGTGACCAGATTCGTCAAGAATAGACTGGTTGAAGTTGAAACCGTTAAGGTTGAATGCCATAGTAGCAACACCAAGAGAGGTGAACCAGATACCAATTACAGGCCAAGCTGCAAGGAAGAAGTGAAGAGAACGGGAGTTGTTG
ATTGACTTTCGGTAGGAGGCTCAAAGAAGGAAAGGCACTATTACCTAACCAGAGATAACTACAAGCGGAGATTCCAAGCCTTTATGGACTCATTCTAGCATCTAAGAGGTGTTGCAGGATAACCATACAACAGTTGTACCTGTTTACCCGGGTATTGATACGTCGCCACAACGATCTCTACTTAGGTAGGTAGGTCAATACGTCGTTCGAAAGGCGCCCGAAGGGCCTACTGTGAGTTTAATTCATCGTTCAAACGTTCCCAATAATAAGGAAGGTAATCTAATCGTTCTTAATCTTCGTGCATTATTACTAGCCATCGTTCTTAATAATATTACATCATCGTTAATCAGAAAGCCTAGTC
TTACATTGAGTAGGCATCTTTAATAGCTTGTAGGGTTCACACCGCAGTCTAAAGGTAGAAAGGTCCAACAATCAGGTCATGTGGCCCAGAAACCACGCTGGTAACCTGAGACCCTACCTCCCTTCGGGGATCCTATCAAATGGTCTGTGTATTCAGTCCCCGTCTTACGGAGTGCTTGTGGCGGTGGAGTGGCAGGGGTAGGCAAGTAGTCGAGTGGTGAGCTGTAATGGTGTATCCGCGTTTACCTTCCTGGTACCTCGGTGCCTCGGTAAGAAGACGAACTCTCGTTAGTGAGGCCAGCGTAAACCTTTTTCCATATCTATTATGACAAGCCTTATTCGCT
CAAGCCTTATTCGCTCTAACTCCTGGGGTTCTTTCGTTCAAACAATCACTTCTTCCTCTAACCGTCTTTATATCGGTTGGTTCGGTCTCCTCGTCTTCCCACTTCTCTCCCTTGCTACCGTAGCTTATATCACTGCTTTCTTCCTTGCTCCTGCAGTCGATATTGATGGTATCCGTGAGCCAGTTGCAGGTTCCCTTATCTATGGTAACAACATCATCTCTGGTGCTGTTATTCCTTCTT
CAACAACTCCCGTTCTCTTCACTTCTTCCTTGCAGCTTGGCCTGTAATTGGTATCTGGTTCACCTCTCTTGGTGTTGCTACTATGGCATTCAACCTTAACGGTTTCAACTTCAACCAGTCTATTCTTGACGAATCTGGTCACTACATTAACTCTTGGGCTGATATCCTCAACCGTGCTGATCTTGGTATCGAGGTAATGCACGAGCGTAACGCTCATAACTTCCCTCTTG
GACTAGGCTTTCTGATTAACGATGATGTAATATTATTAAGAACGATGGCTAGTAATAATGCACGAAGATTAAGAACGATTAGATTACCTTCCTTATTATTGGGAACGTTTGAACGATGAATTAAACTCACAGTAGGCCCTTCGGGCGCCTTTCGAACGACGTATTGACCTACCTACCTAAGTAGAGATCGTTGTGGCGACGTATCAATACCCGGGTAAACAGGTACAACTGTTGTATGGTTATCCTGCAACACCTCTTAGATGCTAGAATGAGTCCATAAAGGCTTGGAATCTCCGCTTGTAGTTATCTCTGGTTAGGTAATAGTGCCTTTCCTTCTTTGAGCCTCCTACCGAAAGTCAAT

GCAACTCAAGACGCTCTTCACACCAATCGTAAATGAAACCCATGTAGAGAATGCTTGTTAACGAATAGGCATGAGGGTTCCTGGTATACTTCTGGCCTAACCAGGAGGCATTTGTTAATTAATTCGAGACCATATTGTATCTCTCGACTCCCAACAGTGACTCTGCACTCATGGTACTGTGTTGATGGGGAGCCTTTCATCTTATCTTTCTATTAAGTGTCGTTTCTACATTTATCTAGTCGTTCATTTGTCTTTCAAGCTCTAGTCCTTAATGGAGACTTGTGAGATCGGGA
AACACTGTACCCAACGAAGGGAACACGTTATTGAGAGCCTCAGGAGTCGCAGTTACGATCTTGCACGCCCAATAGCCAACCTGATCCCATGGTAGGGAGTAACCTGTGACACCGAAGGACACAGTACAGATGGCTAGGATAACGCCGGAGATCCATGTGAGTTCCCTTGGCTTCTTGAAACCCGCAGTCAGATAAACACGACTAACGTGAAGAAGTAGGACGAGGACCATCAAGCCAGAAGAGGTACGGTGGATGGATCGAACCAACCAACCGAATGATACCTCATTTGTGATATACGTGACACTCGAGAGTGCCTCAACCACGTTAGGCCTGTAGTAGAGAGTCATGGCAAAACCAGTTGCCGCTTGGATGATGAAACATGTCAACACGATACCGCCGAAGCAATAGAAGATGTTAACATGAGAAGGAACGAACTTAGAGAGGATATCGTCTGCAAT

TAGGAAACACCAAGACGGTAGGCTAAGGAAATAACCCAAGAAGACCTTCACAAGAGAGTCAGATGGAATCCTAGCCAATACACCAGAACCTGCAAGCGATAGTACTGCGCATTGCTGTGGAATAGACATTGGAGATGCAACATCCTGCTTAAGAACCTCACGAATCCTCCTACCATTAGCTAGAGCCCTCGCTGTGTCCTCACCGAGATCAGAGGCAAACTGAGAGAAAGCCTCCAACTCAACGAACTGTGCAAGAGTAAGCTTAAGTCGACCCGCAACCATCTTCATCTGGTCCTGTTGTGCCGCAGAACCGACACGTGTAACCGAGATACCTAC
TCCCGATCTCACAAGTCTCCATTAAGGACTAGAGCTTGAAAGACAAATGAACGACTAGATAAATGTAGAAACGACACTTAATAGAAAGATAAGATGAAAGGCTCCCCATCAACACAGTACCATGAGTGCAGAGTCACTGTTGGGAGTCGAGAGATACAATATGGTCTCGAATTAATTAACAAATGCCTCCTGGTTAGGCCAGAAGTATACCAGGAACCCTCATGCCTATTCGTTAACAAGCATTCTCTACATGGGTTTCATTTACGATTGGTGTGAAGAGCGTCTTGAGTTGC
ATTGCAGACGATATCCTCTCTAAGTTCGTTCCTTCTCATGTTAACATCTTCTATTGCTTCGGCGGTATCGTGTTGACATGTTTCATCATCCAAGCGGCAACTGGTTTTGCCATGACTCTCTACTACAGGCCTAACGTGGTTGAGGCACTCTCGAGTGTCACGTATATCACAAATGAGGTATCATTCGGTTGGTTGGTTCGATCCATCCACCGTACCTCTTCTGGCTTGATGGTCCTCGTCCTACTTCTTCACGTTAGTCGTGTTTATCTGACTGCGGGTTTCAAGAAGCCAAGGGAACTCACATGGATCTCCGGCGTTATCCTAGCCATCTGTACTGTGTCCTTCGGTGTCACAGGTTACTCCCTACCATGGGATCAGGTTGGCTATTGGGCGTGCAAGATCGTAACTGCGACTCCTGAGGCTCTCAATAACGTGTTCCCTTCGTTGGGTACAGTGTT

GTAGGTATCTCGGTTACACGTGTCGGTTCTGCGGCACAACAGGACCAGATGAAGATGGTTGCGGGTCGACTTAAGCTTACTCTTGCACAGTTCGTTGAGTTGGAGGCTTTCTCTCAGTTTGCCTCTGATCTCGGTGAGGACACAGCGAGGGCTCTAGCTAATGGTAGGAGGATTCGTGAGGTTCTTAAGCAGGATGTTGCATCTCCAATGTCTATTCCACAGCAATGCGCAGTACTATCGCTTGCAGGTTCTGGTGTATTGGCTAGGATTCCATCTGACTCTCTTGTGAAGGTCTTCTTGGGTTATTTCCTTAGCCTACCGTCTTGGTGTTTCCTA


