803 research outputs found

    Laser biomodification of the bone bed surface for placement of spiral dental implants: a study based on scanning electron microscopy

    Get PDF
    Introduction: Various rotary and mechanical instruments are used in conventional oral surgery for osteotomies. Despite the implementation of effective cooling systems, it is difficult to prevent thermal damage to the adjacent bone caused by heat generated during the procedure. A smear layer forms on the surface, which can impede the interaction of blood elements with the underlying tissue, resulting in a delayed healing process. Aim: This study explores the possibility of overcoming these drawbacks by combining conventional methods with a pulsed Er:YAG laser. By examining the osteotomy surfaces using scanning electron microscopy (SEM), we investigated the potential synergistic effects that could benefit conventional implantology. Materials and methods: Split osteotomies were performed on mandibles of freshly euthanized domestic pigs (Sus scrofa domestica). With osteotomy surface examination, the experimental comparison involved two groups: group A - standard technique, and group B - surface ablation using an Er:YAG laser by applying our own method. The samples from both groups were examined using scanning electron microscopy (SEM). Results: In group A samples, the bone surface was smooth, with an amorphous layer and microcracks all over it. The thickness of this layer ranged from 21.77 µm to 136.2 µm, completely obstructing the Volkmann’s and Haversian canals. In group B, the borders were smooth and well defined. The bone structure remained unchanged, with empty intratrabecular spaces, no signs of carbonization, and open canals reaching the surface. The smear layer measured between 3.054 µm and 47.26 µm, with complete absence observed in some places. Conclusions: The present study provides evidence that ablation of the osteotomy surface using an Er:YAG laser leads to biomodification by eliminating the smear layer without altering the parameters of the bone bed

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
    corecore