242 research outputs found

    Fluoxetine: a case history of its discovery and preclinical development

    Get PDF
    Introduction: Depression is a multifactorial mood disorder with a high prevalence worldwide. Until now, treatments for depression have focused on the inhibition of monoaminergic reuptake sites, which augment the bioavailability of monoamines in the CNS. Advances in drug discovery have widened the therapeutic options with the synthesis of so-called selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine. Areas covered: The aim of this case history is to describe and discuss the pharmacokinetic and pharmacodynamic profiles of fluoxetine, including its acute effects and the adaptive changes induced after long-term treatment. Furthermore, the authors review the effect of fluoxetine on neuroplasticity and adult neurogenesis. In addition, the article summarises the preclinical behavioural data available on fluoxetine’s effects on depressive-like behaviour, anxiety and cognition as well as its effects on other diseases. Finally, the article describes the seminal studies validating the antidepressant effects of fluoxetine. Expert opinion: Fluoxetine is the first selective SSRI that has a recognised clinical efficacy and safety profile. Since its discovery, other molecules that mimic its mechanism of action have been developed, commencing a new age in the treatment of depression. Fluoxetine has also demonstrated utility in the treatment of other disorders for which its prescription has now been approved

    The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression.

    Get PDF
    Major depression is a highly complex disabling psychiatric disorder affecting millions of people worldwide. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these medications. A better understanding of the neurobiology of depression and the mechanisms underlying antidepressant response is thus critically needed. We previously reported that mice lacking CREB-regulated transcription coactivator 1 (CRTC1) exhibit a depressive-like phenotype and a blunted antidepressant response to the selective serotonin reuptake inhibitor fluoxetine. In this study, we similarly show that Crtc1(-/-) mice are resistant to the antidepressant effect of chronic desipramine in a behavioral despair paradigm. Supporting the blunted response to this tricyclic antidepressant, we found that desipramine does not significantly increase the expression of Bdnf and Nr4a1-3 in the hippocampus and prefrontal cortex of Crtc1(-/-) mice. Epigenetic regulation of neuroplasticity gene expression has been associated with depression and antidepressant response, and histone deacetylase (HDAC) inhibitors have been shown to have antidepressant-like properties. Here, we show that unlike conventional antidepressants, chronic systemic administration of the HDAC inhibitor SAHA partially rescues the depressive-like behavior of Crtc1(-/-) mice. This behavioral effect is accompanied by an increased expression of Bdnf, but not Nr4a1-3, in the prefrontal cortex of these mice, suggesting that this epigenetic intervention restores the expression of a subset of genes by acting downstream of CRTC1. These findings suggest that CRTC1 alterations may be associated with treatment-resistant depression, and support the interesting possibility that targeting HDACs may be a useful therapeutic strategy in antidepressant development

    Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist

    Get PDF
    In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30?min and 24?h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.Acknowledgements: M.G.-S. was recipient of a contract from the Sistema Nacional de Garantía Juvenil co-funded by the European Social Fund. We also thank Novartis for the generous gift of NVP-AAM077. This work was supported by the Instituto de Salud Carlos III, Subdirección General del Evaluación y Fomento de la Investigación (FIS Grants PI13/00038 and PI16/00217) that were co-funded by the European Regional Development Fund (‘A way to build Europe’). Funding from the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III is also acknowledged

    Peripheral administration of lactate produces antidepressant-like effects.

    Get PDF
    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression

    Stress Leads to Contrasting Effects on the Levels of Brain Derived Neurotrophic Factor in the Hippocampus and Amygdala

    Get PDF
    Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2h/day) causes growth of dendrites and spines in the basolateral amygdala (BLA), but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity- BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2h) leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders

    Plasma BDNF Levels Vary in Relation to Body Weight in Females

    Get PDF
    Brain derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of depression as well as neuropsychiatric and neurodegenerative disorders. Recent studies show a role of BDNF in energy metabolism and body weight regulation. We examined BDNF levels in plasma and cerebrospinal fluid (CSF) samples from age matched elderly depressed and control subjects. Also, the association of BDNF levels with age, gender, body weight, body mass index (BMI), and cognitive performance was evaluated. We did not find any significant differences in plasma and CSF BDNF levels between depressed and control subjects. Plasma BDNF levels were negatively correlated with age (but not with BMI and body weight), when analyses were performed including both depressed and control subjects. A significant reduction in plasma BDNF levels was observed in females as compared to male subjects, and the change in BDNF levels were significantly and positively related to body weight in females. Furthermore, significant increases in Total Recall and Delayed Recall values were found in females as compared to males. In conclusion, the lower BDNF levels observed in females suggest that changes in peripheral BDNF levels are likely secondary to an altered energy balance. However, further studies using larger sample size are warranted

    Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis

    Get PDF
    Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In addition, animal studies suggest an association between reduced hippocampal neurogenesis and depressive-like behavior. These associations were predominantly established based on responses to antidepressant drugs and alterations in BDNF levels and neurogenesis in depressive patients or animal models for depressive behavior. Nevertheless, there is no direct evidence that the actual reduction of the BDNF protein in specific brain sites can induce depressive-like behaviors or affect neurogenesis in vivo. Using BDNF knockdown by RNA interference and lentiviral vectors injected into specific subregions of the hippocampus we show that a reduction in BDNF expression in the dentate gyrus, but not the CA3, reduces neurogenesis and affects behaviors associated with depression. Moreover, we show that BDNF has a critical function in neuronal differentiation, but not proliferation in vivo. Finally, we found that a specific BDNF knockdown in the ventral subiculum induces anhedonic-like behavior. These findings provide substantial support for the neurotrophic hypothesis of depression and specify anatomical and neurochemical targets for potential antidepressant interventions. Moreover, the specific effect of BDNF reduction on neuronal differentiation has broader implications for the study of neurodevelopment and neurodegenerative diseases

    The role of proteomics in depression research

    Get PDF
    Depression is a severe neuropsychiatric disorder affecting approximately 10% of the world population. Despite this, the molecular mechanisms underlying the disorder are still not understood. Novel technologies such as proteomic-based platforms are beginning to offer new insights into this devastating illness, beyond those provided by the standard targeted methodologies. Here, we will show the potential of proteome analyses as a tool to elucidate the pathophysiological mechanisms of depression as well as the discovery of potential diagnostic, therapeutic and disease course biomarkers
    corecore