248 research outputs found

    Book Review – From Human Trafficking to Human Rights: Reframing Contemporary Slavery ​

    Get PDF
    This review identify the strong points Alison Brysk and Austin Choi-Fitzpatrick make about Human Trafficking. Their book From Human Trafficking to Human Rights: Re-framing Contemporary Slavery aims at correcting the current view the world has on the subject. They claim that this is the first step to end human trafficking because it correctly identifies the issues and causes. This review will reveal weather the Authors have significant evidence to support their claims

    Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture

    Get PDF
    © 2015 The Authors. In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process

    Imposed currents in galvanic cells

    Get PDF
    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current against an external load, but also operation in two modes which require a net input of electrical energy: (i) the electrolytic charging mode, where a negative current is imposed to generate a voltage exceeding the open-circuit voltage, and (ii) the “super-galvanic” discharging mode, where a positive current exceeding the short-circuit current is imposed to generate a negative voltage. Analysis of the various (dis-)charging modes of galvanic cells is important to predict the efficiency of electrical to chemical energy conversion and to provide sensitive tests for experimental validation of fuel cell models. In the model, we consider effects of diffuse charge on electrochemical charge-transfer rates by combining a generalized Frumkin-Butler-Volmer equation for reaction kinetics across the compact Stern layer with the full Poisson-Nernst-Planck transport theory, without assuming local electroneutrality. Since this approach is rare in the literature, we provide a brief historical review. To illustrate the general theory, we present results for a monovalent binary electrolyte, consisting of cations, which react at the electrodes, and non-reactive anions, which are either fixed in space (as in a solid electrolyte) or are mobile (as in a liquid electrolyte). The full model is solved numerically and compared to analytical results in the limit of thin diffuse layers, relative to the membrane thickness. The spatial profiles of the ion concentrations and electrostatic potential reveal a complex dependence on the kinetic parameters and the imposed current, in which the diffuse charge at each electrode and the total membrane charge can have either sign, contrary perhaps to intuition. For thin diffuse layers, simple analytical expressions are presented for galvanic cells valid in all three (dis-)charging modes in the two subsequent limits of the ratio δ of the effective thicknesses of the compact and diffuse layers: (i) the “Helmholtz limit” (δ → ∞) where the compact layer carries the double layer voltage as in standard Butler-Volmer models, and (ii) the opposite “Gouy-Chapman limit” (δ → 0) where the diffuse layer fully determines the charge-transfer kinetics. In these limits, the model predicts both reaction-limited and diffusion-limited currents, which can be surpassed for finite positive values of the compact layer, diffuse layer and membrane thickness

    Regression Analysis of PEM Fuel Cell Transient Response

    Get PDF
    To develop operating strategies in polymer electrolyte membrane (PEM) fuel cell-powered applications, precise computationally efficient models of the fuel cell stack voltage are required. Models are needed for all operating conditions, including transients. In this work, transient evolutions of voltage, in response to load changes, are modeled with a sum of three exponential decay functions. Amplitude factors are correlated to steady-state operating data (temperature, humidity, average current, resistance, and voltage). The obtained time constants reflect known processes of the membrane heat/water transport. These model parameters can form the basis for the prediction of voltage overshoot/undershoot used in computational-based control systems, used in real-time simulation. Furthermore, the results provide an empirical basis for the estimation of the magnitude of temporary voltage loss to be expected with sudden load changes, as well as a systematic method for the analysis of experimental data. Its applicability is currently limited to thin membranes with low to moderate humidity gases, and with adequately high reactant-gas stoichiometry

    Oxidized mild steel S235: an efficient anode for the electrocatalytically initiated water-splitting

    Get PDF
    The surface of steel S235 was oxidized by Cl₂ gas and checked for its electrocatalytic efficiency regarding oxygen formation in aqueous solution. If exposed to humid Cl₂ gas for 110 min, steel S235 became an electrocatalyst that exhibits an overpotential for the oxygen evolution reaction (OER) of 462 mV at 1 mA cm² at pH 7. The OER activity of the same sample at pH 13 was moderate (347 mV overpotential at 2.0 mA cm² current density) in comparison with OER electrocatalysts developed recently. Potential versus time plots measured at a constant current demonstrate the sufficient stability of all samples under catalysis conditions at pH 7 and 13 for tens of hours. High-resolution X-ray photoelectron spectra could be reasonably resolved with the proviso that Fe₂O₃, FeO(OH), MnO(OH), and Mn₂O₃ are the predominant Fe and Mn species on the surface of the oxidized steel S235

    Understanding the electrocatalysis of oxygen reduction on platinum and its alloys

    Get PDF
    corecore