560 research outputs found
Absorption and quasinormal modes of classical fields propagating on 3D and 4D de Sitter spacetime
We extensively study the exact solutions of the massless Dirac equation in 3D
de Sitter spacetime that we published recently. Using the Newman-Penrose
formalism, we find exact solutions of the equations of motion for the massless
classical fields of spin s=1/2,1,2 and to the massive Dirac equation in 4D de
Sitter metric. Employing these solutions, we analyze the absorption by the
cosmological horizon and de Sitter quasinormal modes. We also comment on the
results given by other authors.Comment: 31 page
Crime as risk taking
Engagement in criminal activity may be viewed as risk-taking behaviour as it has both benefits and drawbacks that are probabilistic. In two studies, we examined how individuals' risk perceptions can inform our understanding of their intentions to engage in criminal activity. Study 1 measured youths' perceptions of the value and probability of the benefits and drawbacks of engaging in three common crimes (i.e. shoplifting, forgery, and buying illegal drugs), and examined how well these perceptions predicted youths' forecasted engagement in these crimes, controlling for their past engagement. We found that intentions to engage in criminal activity were best predicted by the perceived value of the benefits that may be obtained, irrespective of their probabilities or the drawbacks that may also be incurred. Study 2 specified the benefit and drawback that youth thought about and examined another crime (i.e. drinking and driving). The findings of Study 1 were replicated under these conditions. The present research supports a limited rationality perspective on criminal intentions, and can have implications for crime prevention/intervention strategies
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
The magnetic, electrical and structural properties of copper-permalloy alloys
Copper-permalloy [Cu1âx(Ni80Fe20)x] alloy films were deposited by co-sputtering and their chemical, structural, magnetic, and electrical properties were characterized. These films are found to have favorable weak ferromagnetic properties for low temperature magnetoelectronic applications. Our results show that by varying the composition, the saturation magnetization (Ms) can be tuned from 700 emu/cm3 to 0 and the Curie temperature (Tc), can be adjusted from 900 K to 0 K. The Ms and Tc are found to scale linearly between x = 25% and 100%. Electronic structure calculations are used to provide a strong fundamental understanding of the mechanisms responsible for establishing the observed electrical and magnetic properties. The theoretical results also show that the introduction of Cu into the permalloy lattice results in very strong spin scattering in the minority spin channel, with only moderate interactions in the majority channel
Gravitational Collapse in Generalized Vaidya Space-Time for Lovelock Gravity Theory
In this work, we have assumed the generalized Vaidya solution in Lovelock
theory of gravity in -dimensions. It has been shown that Gauss-Bonnet
gravity, dimensionally continued Lovelock gravity and pure Lovelock gravity can
be constructed by suitable choice of parameters. We have investigated the
occurrence of singularities formed by the gravitational collapse in above three
particular forms of Lovelock theory of gravity. The dependence of the nature of
singularity on the existence of radial null geodesic for Vaidya space-time has
been specially considered. In all the three models, we have shown that the
nature of singularities (naked singularity or black hole) completely depend on
the parameters. Choices of various parameters are shown in tabular form. In
Gauss-Bonnet gravity theory, it can be concluded that the possibility of naked
singularity increases with increase in dimensions. In dimensionally continued
Lovelock gravity, the naked singularity is possible for odd dimensions for
several values of parameters. In pure Lovelock gravity, only black hole forms
due to the gravitational collapse for any values of parameters. It has been
shown that when accretion is taking place on a collapsing object, it is highly
unlikely to get a black hole. Finally on considering the phantom era in the
expanding universe it is observed that there is no possibility of formation of
a black hole if we are in the Gauss-Bonnet gravity considering the accreting
procedure upon a collapsing object.Comment: 11 page
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
- âŠ