87 research outputs found

    The effects of graded motor imagery and its components on chronic pain: A systematic review and meta-analysis

    Get PDF
    This is the post-print version of the final paper published in The Journal of Pain. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 The American Pain Society.Graded motor imagery (GMI) is becoming increasingly used in the treatment of chronic pain conditions. The objective of this systematic review was to synthesize all evidence concerning the effects of GMI and its constituent components on chronic pain. Systematic searches were conducted in 10 electronic databases. All randomized controlled trials (RCTs) of GMI, left/right judgment training, motor imagery, and mirror therapy used as a treatment for chronic pain were included. Methodological quality was assessed using the Cochrane risk of bias tool. Six RCTs met our inclusion criteria, and the methodological quality was generally low. No effect was seen for left/right judgment training, and conflicting results were found for motor imagery used as stand-alone techniques, but positive effects were observed for both mirror therapy and GMI. A meta-analysis of GMI versus usual physiotherapy care favored GMI in reducing pain (2 studies, n = 63; effect size, 1.06 [95% confidence interval, .41, 1.71]; heterogeneity, I2 = 15%). Our results suggest that GMI and mirror therapy alone may be effective, although this conclusion is based on limited evidence. Further rigorous studies are needed to investigate the effects of GMI and its components on a wider chronic pain population.NHMR

    Ecological countermeasures to prevent pathogen spillover and subsequent pandemics

    Get PDF
    Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy

    Scaling up genetic circuit design for cellular computing:advances and prospects

    Get PDF

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link

    Assessing the paleoenvironmental significance of middle-late Pennsylvanian conodont apatite \u3csup\u3e18\u3c/sup\u3eO values in the Illinois basin

    No full text
    © 2014 SEPM (Society for Sedimentary Geology). Conodont apatite 18OV-SMOW values from Middle though Upper Pennsylvanian (Desmoinesian-Missourian) laminated, marine black shale units within cyclic deposits of intercalated terrestrial and marine strata (cyclothems) from the Illinois Basin (United States) were measured in order to evaluate their utility as a proxy for changes in the oxygen isotopic composition of the epicontinental Late Pennsylvanian Midcontinent Sea (LPMS). The average 18OV-SMOW values of well-preserved monogeneric (Idiognathodus) separates of conodont apatite from 12 lithologic units representing nine cyclothems range from 17.0‰ to 20.1‰ and average 19.0‰ ± 0.4‰ (1). Within the limits of analytical uncertainty of stable isotope measurements, the stratigraphic distribution of conodont apatite 18O values is nontrending; particularly, there is no significant shift in 18O values across the Desmoinesian-Missourian boundary, a period that has been interpreted to preserve a shift toward a warmer climate, increased seasonality, and shorter periods of wet conditions in the terrestrial record. Conodont apatite 18O values from stratigraphically equivalent black shale members across the Illinois Basin vary up to 2.6‰, which is nearly equivalent to the observed stratigraphic range of conodont apatite 18O values, and suggests differences in local (basin-scale) seawater 18O values affected the conodont apatite 18O values. Within analytical uncertainty, conodont apatite 18O values from the Illinois Basin and Midcontinent Basin (United States) are indistinguishable, suggesting a component of overarching broader regional to global controls on seawater 18O values. Nevertheless, if the large variability observed in stratigraphically equivalent black shale members in the Illinois Basin is attributed to regional factors, these results indicate caution should be used when attempting to interpret temporal shifts from single aliquots of conodonts in epicontinental settings
    corecore