35 research outputs found

    Hazenella coriacea gen. nov., sp nov., isolated from clinical specimens

    Get PDF
    A Gram-staining-positive, endospore-forming rod was isolated independently from clinical specimens in New York State, USA, once in 2009 and twice in 2011. The three isolates had identical 16S rRNA gene sequences and, based on their 16S rRNA gene sequence, are most closely related to the type strains of Laceyella sediminis and L. sacchari (94.6% similarity). The partial 23S rRNA gene sequences of the three strains were also 100% identical. Maximumlikelihood phylogenetic analysis suggests that the new isolates belong to the family Thermoactinomycetaceae. Additional biochemical and phenotypic characteristics of the strains support the family designation and suggest that the three isolates represent a single species. In each of the strains, the predominant menaquinone is MK-7, the diagnostic diamino acid is mesodiaminopimelic acid and the major cellular fatty acids are iso-C15 : 0, anteiso-C15 : 0 and iso-C13 : 0. The polar lipids are phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids, four unknown aminophospholipids and an unknown lipid. It is proposed that the novel isolates represent a single novel species within a new genus, for which the name Hazenella coriacea gen. nov., sp. nov. is proposed. The type strain of Hazenella coriacea is strain 23436T (5DSM 45707T5LMG 27204T)

    Clinical care recommendations for cardiologists treating adults with myotonic dystrophy

    Get PDF
    Myotonic dystrophy is an inherited systemic disorder affecting skeletal muscle and the heart. Genetic testing for myotonic dystrophy is diagnostic and identifies those at risk for cardiac complications. The 2 major genetic forms of myotonic dystrophy, type 1 and type 2, differ in genetic etiology yet share clinical features. The cardiac management of myotonic dystrophy should include surveillance for arrhythmias and left ventricular dysfunction, both of which occur in progressive manner and contribute to morbidity and mortality. To promote the development of care guidelines for myotonic dystrophy, the Myotonic Foundation solicited the input of care experts and organized the drafting of these recommendations. As a rare disorder, large scale clinical trial data to guide the management of myotonic dystrophy are largely lacking. The following recommendations represent expert consensus opinion from those with experience in the management of myotonic dystrophy, in part supported by literature-based evidence where available

    Clinical care recommendations for cardiologists treating adults with myotonic dystrophy

    Get PDF
    Myotonic dystrophy is an inherited systemic disorder affecting skeletal muscle and the heart. Genetic testing for myotonic dystrophy is diagnostic and identifies those at risk for cardiac complications. The 2 major genetic forms of myotonic dystrophy, type 1 and type 2, differ in genetic etiology yet share clinical features. The cardiac management of myotonic dystrophy should include surveillance for arrhythmias and left ventricular dysfunction, both of which occur in progressive manner and contribute to morbidity and mortality. To promote the development of care guidelines for myotonic dystrophy, the Myotonic Foundation solicited the input of care experts and organized the drafting of these recommendations. As a rare disorder, large scale clinical trial data to guide the management of myotonic dystrophy are largely lacking. The following recommendations represent expert consensus opinion from those with experience in the management of myotonic dystrophy, in part supported by literature-based evidence where available

    TIM-3 blockade in diffuse intrinsic pontine glioma models promotes tumor regression and antitumor immune memory

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain stem tumor and the leading cause of pediatric cancer-related death. To date, these tumors remain incurable, underscoring the need for efficacious therapies. In this study, we demonstrate that the immune checkpoint TIM-3 (HAVCR2) is highly expressed in both tumor cells and microenvironmental cells, mainly microglia and macrophages, in DIPG. We show that inhibition of TIM-3 in syngeneic models of DIPG prolongs survival and produces long-term survivors free of disease that harbor immune memory. This antitumor effect is driven by the direct effect of TIM-3 inhibition in tumor cells, the coordinated action of several immune cell populations, and the secretion of chemokines/cytokines that create a proinflammatory tumor microenvironment favoring a potent antitumor immune response. This work uncovers TIM-3 as a bona fide target in DIPG and supports its clinical translation

    The Oncolytic Adenovirus Delta-24-RGD in Combination With ONC201 Induces a Potent Antitumor Response in Pediatric High-Grade and Diffuse Midline Glioma Models

    Get PDF
    BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq, and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor.

    Get PDF
    Corticosteroids, such as dexamethasone, are routinely used as palliative care in neuro-oncology for their anti-inflammatory benefits, however many patients experience dose limiting side effects caused by glucocorticoid response element (GRE)-mediated transcription. The purpose of this study was to use a murine model to investigate a new steroid alternative, vamorolone, which promises to reduce side effects through dissociating GRE-mediated transcription and NF-κB -mediated anti-inflammatory actions. To compare vamorolone to dexamethasone in reducing pro-inflammatory signals in vitro, murine glioma cells were treated with dexamethasone, vamorolone or vehicle control. Changes in mRNA expression were assessed using the nanostring inflammatory platform. Furthermore, drug efficacy, post-treatment behavioral activity and side effects were assessed by treating two cohorts of brain tumor bearing mice with dexamethasone, vamorolone, or vehicle control. Our investigation showed that treatment with vamorolone resulted in a reduction of pro-inflammatory signals in tumor cells in vitro similar to treatment with dexamethasone. Treatment with vamorolone resulted in a better safety profile in comparison to dexamethasone treatment. Vamorolone- treated mice showed similar or better activity and survival when compared to dexamethasone-treated mice. Our data indicate vamorolone is a potential steroid-sparing alternative for treating patients with brain tumors

    TGFβ resistant Cord Blood derived NK cells as an off the shelf Immunotherapy for the treatment of Medulloblastoma

    No full text
    Medulloblastoma (MB), the most common pediatric brain tumor, presents with a poor prognosis in a subset of patients with high risk disease. In these patients, current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off the shelf effector cells for medulloblastoma immunotherapy because they recognize malignant cells without the need for a known target and are readily available from multiple banks. However, they are currently limited by immune suppressive cytokines such as Transforming Growth Factor β (TGF-β) in the MB tumor microenvironment. To overcome the detrimental effects of TGF-β, we transduced CB-derived NK cells with a retrovirus expressing a dominant negative TGF-β receptor II (DNRII) (mean transduction efficiency of 39.54%, range 20.8 to 75.1%) and evaluated their ability to kill medulloblastoma in the presence of TGF-β. Following manufacture using GMP compliant methodologies and transduction with DNRII, CB-derived DNRII-transduced NK cells expanded to clinically relevant numbers (mean 769 +/- 308 fold expansion) and retained both their killing ability (mean 21.16+/-8.26% for nontransduced NK cells at E:T of 5:1 vs 18.71+/-7.46% for transduced NK cells, n=5) and their secretion of IFN-γ upon activation. We observed that MB cell killing of CB-NK cells without DNRII expression was reduced (non-transduced cell killing at E:T 5:1 was reduced by 5% from 21.16+/-8.26% to 15.46+/-11.12% in TGF- β rich environment, n=5) while MB cell killing of CB-NK expressing DNRII was increased (mean 12.41+/-10.24% to 20.41+/-10.40% in TGF- β rich environment, n=4). More importantly they exhibit efficacy in vivo, migrating to the site of disease (mean 54.35 cells, n=2), and increasing survival in mice that were engrafted with a MB cell line (p=0.0175 vs untreated animals by Gehan-Breslow-Wilcoxon analysis, n=5 per group). We have also begun looking at primary medulloblastoma samples, and show that these cells also secrete TGF-β. In summary, CB NK cells expressing a DNRII have a functional advantage over unmodified NK cells in the presence of TGF-beta-secreting MB and may be an important therapeutic approach for patients with high risk disease
    corecore