9 research outputs found

    Adaptability of Millets and Landscapes: Ancient Cultivation in North-Central Asia

    Get PDF
    Millet is a highly adaptable plant whose cultivation dramatically altered ancient economies in northern Asia. The adoption of millet is associated with increased subsistence reliability in semi-arid settings and perceived as a cultigen compatible with pastoralism. Here, we examine the pace of millet’s transmission and locales of adoption by compiling stable carbon isotope data from humans and fauna, then comparing them to environmental variables. The Bayesian modelling of isotope data allows for the assessment of changes in dietary intake over time and space. Our results suggest variability in the pace of adoption and intensification of millet production across northern Asia.</jats:p

    The southern Central Asian mountains as an ancient agricultural mixing zone: new archaeobotanical data from Barikot in the Swat valley of Pakistan

    No full text
    The mountain foothills of inner Asia have served as a corridor of communication and exchange for at least five millennia, using historically documented trade routes such as the Silk Road and the Tea-Horse Road. Recent research has illustrated the important role that this mountain corridor played in the dispersal of crops and farming technology between northeast and southwest Asia 5,000 to 1,000 years ago. However, the role of the mountain valleys along the southern rim of the Pamirs and Himalaya in facilitating crop dispersals has not yet been fully explored. Notably, ongoing debates over secondary dispersals of Hordeum (barley) and Triticum (wheat) into China and the routes of dispersal for the East Asian crops Oryza sativa (rice), Prunus persica (peach) and P. armeniaca (apricot) into northern India are continuing topics of inquiry. In this article, we add to these discussions by focusing on archaeobotanical remains from the Barikot site (ca. 1200 bce–50 ce) in the Swat valley of northern Pakistan. The Swat valley is an ancient settlement zone in the Hindu Kush-Karakoram foothills, whose cultural features have always had a strong link with inner Asia. The archaeobotanical assemblage illustrates that a diverse array of crops, with origins across Asia, were cultivated around the same settlement. Additionally, these farmers likely implemented seasonal cropping cycles and irrigation that required various labour inputs and water management regimes.H2020 European Research Council http://dx.doi.org/10.13039/100010663Max Planck Institute for the Science of Human History (2

    The southern Central Asian mountains as an ancient agricultural mixing zone: new archaeobotanical data from Barikot in the Swat valley of Pakistan

    Get PDF
    The mountain foothills of inner Asia have served as a corridor of communication and exchange for at least five millennia, using historically documented trade routes such as the Silk Road and the Tea-Horse Road. Recent research has illustrated the important role that this mountain corridor played in the dispersal of crops and farming technology between northeast and southwest Asia 5,000 to 1,000\ua0years ago. However, the role of the mountain valleys along the southern rim of the Pamirs and Himalaya in facilitating crop dispersals has not yet been fully explored. Notably, ongoing debates over secondary dispersals of Hordeum (barley) and Triticum (wheat) into China and the routes of dispersal for the East Asian crops Oryza sativa (rice), Prunus persica (peach) and P. armeniaca (apricot) into northern India are continuing topics of inquiry. In this article, we add to these discussions by focusing on archaeobotanical remains from the Barikot site (ca. 1200 bce–50 ce) in the Swat valley of northern Pakistan. The Swat valley is an ancient settlement zone in the Hindu Kush-Karakoram foothills, whose cultural features have always had a strong link with inner Asia. The archaeobotanical assemblage illustrates that a diverse array of crops, with origins across Asia, were cultivated around the same settlement. Additionally, these farmers likely implemented seasonal cropping cycles and irrigation that required various labour inputs and water management regimes

    SIMMER employs similarity algorithms to accurately identify human gut microbiome species and enzymes capable of known chemical transformations

    No full text
    Bacteria within the gut microbiota possess the ability to metabolize a wide array of human drugs, foods, and toxins, but the responsible enzymes for these chemical events remain largely uncharacterized due to the time-consuming nature of current experimental approaches. Attempts have been made in the past to computationally predict which bacterial species and enzymes are responsible for chemical transformations in the gut environment, but with low accuracy due to minimal chemical representation and sequence similarity search schemes. Here, we present an in silico approach that employs chemical and protein Similarity algorithms that Identify MicrobioMe Enzymatic Reactions (SIMMER). We show that SIMMER accurately predicts the responsible species and enzymes for a queried reaction, unlike previous methods. We demonstrate SIMMER use cases in the context of drug metabolism by predicting previously uncharacterized enzymes for 88 drug transformations known to occur in the human gut. We validate these predictions on external datasets and provide an in vitro validation of SIMMER’s predictions for metabolism of methotrexate, an anti-arthritic drug. After demonstrating its utility and accuracy, we made SIMMER available as both a command-line and web tool, with flexible input and output options for determining chemical transformations within the human gut. We present SIMMER as a computational addition to the microbiome researcher’s toolbox, enabling them to make informed hypotheses before embarking on the lengthy laboratory experiments required to characterize novel bacterial enzymes that can alter human ingested compounds

    Disruptions, restorations and adaptations to health and nutrition service delivery in multiple states across India over the course of the COVID-19 pandemic in 2020: An observational study.

    Get PDF
    BackgroundModeling studies estimated severe impacts of potential service delivery disruptions due to COVID-19 pandemic on maternal and child nutrition outcomes. Although anecdotal evidence exists on disruptions, little is known about the actual state of service delivery at scale. We studied disruptions and restorations, challenges and adaptations in health and nutrition service delivery by frontline workers (FLWs) in India during COVID-19 in 2020.MethodsWe conducted phone surveys with 5500 FLWs (among them 3118 Anganwadi Workers) in seven states between August-October 2020, asking about service delivery during April 2020 (T1) and in August-October (T2), and analyzed changes between T1 and T2. We also analyzed health systems administrative data from 704 districts on disruptions and restoration of services between pre-pandemic (December 2019, T0), T1 and T2.ResultsIn April 2020 (T1), village centers, fixed day events, child growth monitoring, and immunization were provided by ConclusionsServices to mothers and children were disrupted during stringent lockdown but restored thereafter, albeit not to pre-pandemic levels. Rapid policy guidance and adaptations by FLWs enabled restoration but little remains known about uptake by client populations. As COVID-19 continues to surge in India, focused attention to ensuring essential services is critical to mitigate these major indirect impacts of the pandemic

    tardis-sn/tardis: TARDIS v2023.10.20

    No full text
    &lt;p&gt;This release has been created automatically by the TARDIS continuous delivery pipeline.&lt;/p&gt; &lt;p&gt;A complete list of changes for this release is available at &lt;a href="https://github.com/tardis-sn/tardis/blob/master/CHANGELOG.md"&gt;CHANGELOG.md&lt;/a&gt;.&lt;/p&gt

    The formation of human populations in South and Central Asia

    Get PDF
    By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.N.P. carried out this work while a fellow at the Radcliffe Institute for Advanced Study at Harvard University. P.M. was supported by a Burroughs Wellcome Fund CASI award. N.N. is supported by a NIGMS (GM007753) fellowship. T.C. and A.D. were supported by the Russian Science Foundation (project 14-50-00036). T.M.S. was supported by the Russian Foundation for Basic Research (grant 18-09-00779) “Anthropological and archaeological aspects of ethnogenesis of the population of the southern part of Western and Central Siberia in the Neolithic and Early Bronze Age.” D.P., S.S., and D.L. were supported by European Research Council ERC-2011-AdG 295733 grant (Langelin). O.M. was supported by a grant from the Ministry of Education and Sciences of the Russian Federation No. 33.1907, 2017/Π4 “Traditional and innovational models of a development of ancient Volga population”. A.E. was supported by a grant from the Ministry of Education and Sciences of the Russian Federation No. 33.5494, 2017/BP “Borderlands of cultural worlds (Southern Urals from Antiquity to Early Modern period).” Radiocarbon dating work supported by the NSF Archaeometry program BCS-1460369 to D.Ken. and B.J.C. and by the NSF Archaeology program BCS-1725067 to D.Ken. K.Th. was supported by NCP fund (MLP0117) of the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi. N.Bo., A.N., and M.Z. were supported by the Max Planck Society. D.Re. is an Investigator of the Howard Hughes Medical Institute, and his ancient DNA laboratory work was supported by National Science Foundation HOMINID grant BCS-1032255, by National Institutes of Health grant GM100233, by an Allen Discovery Center grant, and by grant 61220 from the John Templeton Foundation

    Archaeological assessment reveals Earth’s early transformation through land use

    Get PDF
    Humans began to leave lasting impacts on Earth's surface starting 10,000 to 8000 years ago. Through a synthetic collaboration with archaeologists around the globe, Stephens et al. compiled a comprehensive picture of the trajectory of human land use worldwide during the Holocene (see the Perspective by Roberts). Hunter-gatherers, farmers, and pastoralists transformed the face of Earth earlier and to a greater extent than has been widely appreciated, a transformation that was essentially global by 3000 years before the present.Science, this issue p. 897; see also p. 865Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 years before the present (yr B.P.) to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers, and pastoralists by 3000 years ago, considerably earlier than the dates in the land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by more than 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked for 2000 yr B.P. and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth's transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon
    corecore