2,563 research outputs found
How to Collect your Water Sample and Interpret the Results for the Fish Pond Analytical Package
The Arkansas Water Resources Center (AWRC) in cooperation with the Cooperative Extension Service offers several analytical packages to assess the quality of your water resources. This document is intended to provide guidance to aquaculture producers and pond owners on the “Fish Pond Report” provided by the AWRC’s water quality laboratory. The information contained within this fact sheet should be used as general guidance, and the reader is encouraged to seek advice from Extension specialists regarding the interpretation of individual reports and water testing results that may be of concern. The Aquaculture Center for Excellence is at the University of Arkansas at Pine Bluff, see aqfi.uaex.edu for more information and fisheries contact
Oculomotor Behavior Metrics Change According to Circadian Phase and Time Awake
There is a need for non-invasive, objective measures to forecast performance impairment arising from sleep loss and circadian misalignment, particularly in safety-sensitive occupations. Eye-tracking devices have been used in some operational scenarios, but such devices typically focus on eyelid closures and slow rolling eye movements and are susceptible to the intrusion of head movement artifacts. We hypothesized that an expanded suite of oculomotor behavior metrics, collected during a visual tracking task, would change according to circadian phase and time awake, and could be used as a marker of performance impairment
Dose-dependent sensorimotor impairment in human ocular tracking after acute low-dose alcohol administration
Key points: Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose-dependent impairment in oculomotor and ocular behaviours across a range of ultra-low BACs (\u3c0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch-up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low-dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%. Abstract: Changes in oculomotor behaviours are often used as metrics of sensorimotor disruption due to ethanol (EtOH); however, previous studies have focused on deficits at blood-alcohol concentrations (BACs) above about 0.04%. We investigated the dose dependence of the impairment in oculomotor and ocular behaviours caused by EtOH administration across a range of ultra-low BACs (≤0.035%). We took repeated measures of oculomotor and ocular performance from sixteen participants, both pre- and post-EtOH administration. To assess the neurological impacts across a wide range of brain areas and pathways, our protocol measured 21 largely independent performance metrics extracted from a range of behavioural responses ranging from ocular tracking of radial step-ramp stimuli, to eccentric gaze holding, to pupillary responses evoked by light flashes. Our results show significant impairment of pursuit and visual motion processing at 0.015% BAC, reflecting degraded neural processing within extrastriate cortical pathways. However, catch-up saccades largely compensate for the tracking displacement shortfall caused by low pursuit gain, although there still is significant residual retinal slip and thus degraded dynamic acuity. Furthermore, although saccades are more frequent, their dynamics are more sluggish (i.e. show lower peak velocities) starting at BAC levels as low as 0.035%. Small effects in eccentric gaze holding and no effect in pupillary response dynamics were observed at levels below 0.07%, showing the higher sensitivity of the pursuit response to very low levels of blood alcohol, under the conditions of our study
Low-Dose Caffeine Administration During Acute Sleep Deprivation Eliminates Visual Motion Processing Impairment, but Does Not Improve Saccadic Rate
Oculomotor tracking performance changes according to time awake. A constant routine (CR) study demonstrated that increasing time awake 1) reduces the precision of visual motion processing, 2) decreases steady-state closed-loop pursuit performance and 3) decreases peak saccadic velocity. We aimed to determine the contribution of homeostatic sleep pressure on these oculometric changes by administering low-dose caffeine over one night of sleep deprivation. Participants completed two weeks of at-home 8.5 hours sleep per day, followed by an approximately 24-hour laboratory CR in semi-recumbent posture under less than 4 lux of light. The visual tracking task was performed every two hours after waking and hourly overnight. Low-dose caffeine of 0.3 milligrams per kilogram was administered hourly during the biological night. Nine participants (5F) completed the study. Caffeine dosing: 1) prevented the impairment of visual motion processing, 2) reduced by approximately half the impairment of closed-loop pursuit performance (gain, minus 0.47 percent per hour, significance of slope change: p (probability) less than 0.006; proportion smooth, minus 0.35 percent per hour, p less than 0.005), and 3) had an insignificant (p less than 0.39) effect on the impairment of saccadic peak velocity (slope, minus 1.13 percent per hour; intercept, minus 0.62 percent per hour). These results suggest that visual motion processing and some proportion of closed-loop pursuit performance are impaired due to homeostatic mechanisms during sleep deprivation
Reducing the Risk of Invasive Pathogens to Wildlife Health in the United States
Call to Action
In keeping with action items 4.3.1 and 4.3.2 of the 2016–2018 National Invasive Species Council (NISC) Management Plan, the Wildlife Health Task Team of the Invasive Species Advisory Committee (ISAC) was charged with: 1) identifying the major areas of vulnerability to native wildlife from the introduction and spread of invasive pathogens, and 2) making recommendations to address these vulnerabilities, including through potential changes in statute, regulation, policy, or practice of the relevant agencies
A Copper(II) Tris-imidazolylphosphine Complex as a Structural and Functional Model of Flavonol 2,4-Dioxygenase
Reaction of tetrakis(acetonitrile)copper(I) perchlorate ([Cu(NCCH3)4][ClO4]), tris-1-ethyl-4-methylimidazolylphosphine (T1Et4MeIP) (1) and 3-hydroxyflavone (flavH) under ambient conditions produces an in-situ generated flavonol bound copper(II) complex, which converts to a stable green complex that formulates to [Cu(T1Et4MeIP)(flav)][ClO4] (2). The crystal structure of 2 was determined by X-ray diffraction and crystallizes in a triclinic system (P1¯ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; \u3e1¯) with unit cell dimensions of a = 14.537(15) Å, b = 15.794(14) Å, c = 17.044(17) Å, α = 65.58(3)˚, β = 86.80(5)˚, γ = 73.34(4)˚, V = 3376(6) Å3 and Z = 2. While the five-coordinate copper(II) complex is stable under ambient conditions in the solid state, it undergoes oxidative scission of the flavonol pyrone ring under photolytic (300 nm) and/or thermal (120 °C) conditions in the presence of molecular oxygen. The degradative process produces the corresponding methylated products: methylbenzoate, methyl salicylate and N,N-dimethylbenzamide. In addition, the previously undisclosed single crystal X-ray structure of tris-1-ethyl-4-methylimidazolylphosphine (1), T1Et4MeIP, is also reported
Dramatic Shape Sensitivity of Directional Emission Patterns from Similarly Deformed Cylindrical Polymer Lasers
Recent experiments on similarly shaped polymer micro-cavity lasers show a
dramatic difference in the far-field emission patterns. We show for different
deformations of the ellipse, quadrupole and hexadecapole that the large
differences in the far-field emission patterns is explained by the differing
ray dynamics corresponding to each shape. Analyzing the differences in the
appropriate phase space for ray motion, it is shown that the differing
geometries of the unstable manifolds of periodic orbits are the decisive
factors in determining the far-field pattern. Surprisingly, we find that
strongly chaotic ray dynamics is compatible with highly directional emission in
the far-field.Comment: 14 pages, 16 figures (eps), RevTeX 4, submitted to JOSA
Increased Dependence on Saccades for Ocular Tracking with Low Dose Alcohol
Previous studies have shown that certain features of oculomotor performance are impaired at or slightly below the legal limit for driving in most U.S. States (0.08% Blood Alcohol Concentration or BAC). Specifically, alcohol impairs saccadic velocity and steady-state tracking at levels between 0.04% and 0.1% BAC. Here we used a suite of standardized oculometric measures to examine the effect of ultra-low levels of alcohol (down to 0.01% BAC) on steady-state tracking. Our high-uncertainty tracking task reveals that the smooth pursuit system is highly sensitive to BAC, with impairmentextrapolating back to BAC levels at or below 0.01%. BAC generates a dose dependent increase in reliance on the saccadic system that maintains overall steady-state tracking effectiveness at least up to 0.08% BAC, albeit with a significant decrease in smoothness
Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway
During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog
Ecosystem Consequences of Plant Genetic Divergence with Colonization of New Habitat
When plants colonize new habitats altered by natural or anthropogenic disturbances, those individuals may encounter biotic and abiotic conditions novel to the species, which can cause plant functional trait divergence. Over time, site-driven adaptation can give rise to population-level genetic variation, with consequences for plant community dynamics and ecosystem processes. We used a series of 3000-yr-old, lava-created forest fragments on the Island of Hawai`i to examine whether disturbance and subsequent colonization can lead to genetically differentiated populations, and where differentiation occurs, if there are ecosystem consequences of trait-driven changes. These fragments are dominated by a single tree species, Metrosideros polymorpha (Myrtaceae) or ʻohiʻa, which have been actively colonizing the surrounding lava flow created in 1858. To test our ideas about differentiation of genetically determined traits, we (1) created rooted cuttings of ʻohiʻa individuals sampled from fragment interiors and open lava sites, raised these individuals in a greenhouse, and then used these cuttings to create a common garden where plant growth was monitored for three years; and (2) assessed genetic variation and made QST/FST comparisons using microsatellite repeat markers. Results from the greenhouse showed quantitative trait divergence in plant height and pubescence across plants sampled from fragment interior and matrix sites. Results from the subsequent common garden study confirmed that the matrix environment can select for individuals with 9.1% less shoot production and 17.3% higher leaf pubescence. We found no difference in molecular genetic variation indicating gene flow among the populations. The strongest QST level was greater than the FST estimate, indicating sympatric genetic divergence in growth traits. Tree height was correlated with ecosystem properties such as soil carbon and nitrogen storage, soil carbon turnover rates, and soil phosphatase activity, indicating that selection for growth traits will influence structure, function, and dynamics of developing ecosystems. These data show that divergence can occur on centennial timescales of early colonization
- …