165 research outputs found

    Construction of a genome-wide genetic linkage map and identification of quantitative trait loci for powdery mildew resistance in Gerbera daisy

    Get PDF
    Powdery mildew (PM) is a common fungal disease in many important crops. The PM caused by Podosphaera xanthii has been the most challenging problem in commercial Gerbera (Gerbera hybrida) production globally, often leading to severe losses of crop yield and quality. A small number of PM-resistant breeding lines and cultivars have been reported in Gerbera, but the underlying genetics for PM resistance in Gerbera is largely unknown. Scarcity of genomic resources such as genetic linkage maps and molecular markers has severely hindered the effort to understand the genetic basis and locate loci controlling PM resistance in Gerbera. This study aimed to construct a genome-wide genetic linkage map, identify quantitative trait loci (QTL), and molecular markers for PM resistance in Gerbera. A segregating mapping population was developed by crossing PM-resistant and -susceptible Gerbera breeding lines, genotyped by sequencing, and phenotyped for PM resistance. A genome-wide genetic linkage map constructed with 791 single polymorphic site (SNP) markers spans 1912.30 cM across 27 linkage groups (LG) and reaches a density of 1 marker per 2.42 cM. One major consistent QTL was discovered in LG16, explaining more than 16.6% of the phenotypic variance for PM resistance. The QTL was tagged with two flanking SNP markers. The availability of this genetic linkage map will be very useful for locating and tagging QTLs for other important traits in Gerbera, and the newly discovered QTL and SNP markers will enable development of molecular markers for improving Gerbera for resistance to PM

    Linking plant phenology to conservation biology

    Get PDF
    Phenology has achieved a prominent position in current scenarios of global change research given its role inmonitoring and predicting the timing of recurrent life cycle events. However, the implications of phenology to environmental conservation and management remain poorly explored. Here,we present the first explicit appraisal of howphenology-amultidisciplinary science encompassing biometeorology, ecology, and evolutionary biology- can make a key contribution to contemporary conservation biology. We focus on shifts in plant phenology induced by global change, their impacts on species diversity and plant-animal interactions in the tropics, and how conservation efforts could be enhanced in relation to plant resource organization. We identify the effects of phenological changes and mismatches in the maintenance and conservation of mutualistic interactions, and examine how phenological research can contribute to evaluate, manage and mitigate the consequences of land-use change and other natural and anthropogenic disturbances, such as fire, exotic and invasive species. Wealso identify cutting-edge tools that can improve the spatial and temporal coverage of phenological monitoring, from satellites to drones and digital cameras. We highlight the role of historical information in recovering long-term phenological time series, and track climate-related shifts in tropical systems. Finally, we propose a set of measures to boost the contribution of phenology to conservation science.Weadvocate the inclusion of phenology into predictive models integrating evolutionary history to identify species groups that are either resilient or sensitive to future climate-change scenarios, and understand how phenological m ismatches can affect community dynamics, ecosystem services, and conservation over time

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p <.001. Over 24 months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10 ml/min/1.73 m2 decrease), that was most notable in patients with eGFR <30 ml/min/1.73 m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≄90 ml/min/1.73 m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF

    Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    Get PDF
    Background: Clinical complexity is increasingly prevalent among patients with atrial fibrillation (AF). The ‘Atrial fibrillation Better Care’ (ABC) pathway approach has been proposed to streamline a more holistic and integrated approach to AF care; however, there are limited data on its usefulness among clinically complex patients. We aim to determine the impact of ABC pathway in a contemporary cohort of clinically complex AF patients. Methods: From the ESC-EHRA EORP-AF General Long-Term Registry, we analysed clinically complex AF patients, defined as the presence of frailty, multimorbidity and/or polypharmacy. A K-medoids cluster analysis was performed to identify different groups of clinical complexity. The impact of an ABC-adherent approach on major outcomes was analysed through Cox-regression analyses and delay of event (DoE) analyses. Results: Among 9966 AF patients included, 8289 (83.1%) were clinically complex. Adherence to the ABC pathway in the clinically complex group reduced the risk of all-cause death (adjusted HR [aHR]: 0.72, 95%CI 0.58–0.91), major adverse cardiovascular events (MACEs; aHR: 0.68, 95%CI 0.52–0.87) and composite outcome (aHR: 0.70, 95%CI: 0.58–0.85). Adherence to the ABC pathway was associated with a significant reduction in the risk of death (aHR: 0.74, 95%CI 0.56–0.98) and composite outcome (aHR: 0.76, 95%CI 0.60–0.96) also in the high-complexity cluster; similar trends were observed for MACEs. In DoE analyses, an ABC-adherent approach resulted in significant gains in event-free survival for all the outcomes investigated in clinically complex patients. Based on absolute risk reduction at 1 year of follow-up, the number needed to treat for ABC pathway adherence was 24 for all-cause death, 31 for MACEs and 20 for the composite outcome. Conclusions: An ABC-adherent approach reduces the risk of major outcomes in clinically complex AF patients. Ensuring adherence to the ABC pathway is essential to improve clinical outcomes among clinically complex AF patients

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Congruence of local ecological knowledge (LEK)-based methods and line-transect surveys in estimating wildlife abundance in tropical forests

    Get PDF
    Effective estimation of wildlife population abundance is an important component of population monitoring, and ultimately essential for the development of conservation actions. Diurnal line-transect surveys are one of the most applied methods for abundance estimations. Local ecological knowledge (LEK) is empirically acquired through the observation of ecological processes by local people. LEK-based methods have only been recognized as valid scientific methods for surveying fauna abundance in the last three decades. However, the agreement between both methods has not been extensively analysed. We compared concomitant abundance data for 91 wild species (mammals, birds and tortoises) from diurnal line transects (9,221 km of trails) and a LEK-based method (291 structured interviews) at 18 sites in Central and Western Amazonia. We used biological and socioecological factors to assess the agreements and divergences between abundance indices obtained from both methods. We found a significant agreement of population abundance indices for diurnal and game species. This relationship was also positive regardless of species sociality (solitary or social), body size and locomotion mode (terrestrial and arboreal); and of sampled forest type (upland and flooded forests). Conversely, we did not find significant abundance covariances for nocturnal and non-game species. Despite the general agreement between methods, line transects were not effective at surveying many species occurring in the area, with 40.2% and 39.8% of all species being rarely and never detected in at least one of the survey sites. On the other hand, these species were widely reported by local informants to occur at intermediate to high abundances. Although LEK-based methods have been long neglected by ecologists, our comparative study demonstrated their effectiveness for estimating vertebrate abundance of a wide diversity of taxa and forest environments. This can be used simultaneously with line-transect surveys to calibrate abundance estimates and record species that are rarely sighted during surveys on foot, but that are often observed by local people during their daily extractive activities. Thus, the combination of local and scientific knowledge is a potential tool to improve our knowledge of tropical forest species and foster the development of effective strategies to meet biodiversity conservation goals
    • 

    corecore