184 research outputs found

    Older adult preferences regarding benefits and harms of statin and aspirin therapy for cardiovascular primary prevention

    Get PDF
    OBJECTIVE Personalizing preventive therapies for atherosclerotic cardiovascular disease (ASCVD) is particularly important for older adults, as they tend to have multiple chronic conditions, increased risk for medication adverse effects, and may have heterogenous preferences when weighing health outcomes. However, little is known about outcome preferences related to ASCVD preventive therapies in older adults. METHODS In May 2021, using an established online panel, KnowledgePanel, we surveyed older US adults aged 65-84 years without history of ASCVD on outcome preferences related to statin therapy (benefit outcomes to be reduced by the therapy: heart attack, stroke; adverse effects: diabetes, abnormal liver test, muscle pain) or aspirin therapy (benefit outcomes: heart attack, stroke; adverse effects: brain bleed, bowel bleed, stomach ulcer). We used standardized best-worst scores (range of -1 for "least worrisome" to +1 for "most worrisome") and conditional logistic regression to examine the relative importance of the outcomes. RESULTS In this study, 607 ASCVD-free participants (median age 74, 46% male, 81% White) were included; 304 and 303 completed the statin and aspirin versions of the survey, respectively. For statin-related outcomes, stroke and heart attack were most worrisome (score 0.55; 95% CI 0.51, 0.60) and (0.53; 0.48, 0.58), followed by potential harms of diabetes (-0.07; -0.10, -0.03), abnormal liver test (-0.25; -0.29, -0.20), and muscle pain (-0.77; -0.82, -0.73). For aspirin-related outcomes, stroke and heart attack were similarly most worrisome (0.48; 0.43, 0.52) and (0.43; 0.38, 0.48), followed by brain bleed (0.30; 0.25, 0.34), bowel bleed (-0.31; -0.33, -0.28), and stomach ulcer (-0.90; -0.92, -0.87). Conditional logistic regression and subgroup analyses by age, sex, and race yielded similar results. CONCLUSIONS Older adults generally consider outcomes related to benefits of ASCVD primary preventive therapies-stroke and heart attack-more important than their adverse effects. Integrating patient preferences with risk assessment is an important next step for personalizing ASCVD preventive therapies for older adults

    Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis

    Get PDF
    Funding: V.B. and J.K. were supported by a Wellcome Trust Senior Research Fellowship to N.P. (090868/Z/09/Z)During embryogenesis cells make fate decisions within complex tissue environments. The levels and dynamics of transcription factor expression regulate these decisions. Here, we use single cell live imaging of an endogenous HES5 reporter and absolute protein quantification to gain a dynamic view of neurogenesis in the embryonic mammalian spinal cord. We report that dividing neural progenitors show both aperiodic and periodic HES5 protein fluctuations. Mathematical modelling suggests that in progenitor cells the HES5 oscillator operates close to its bifurcation boundary where stochastic conversions between dynamics are possible. HES5 expression becomes more frequently periodic as cells transition to differentiation which, coupled with an overall decline in HES5 expression, creates a transient period of oscillations with higher fold expression change. This increases the decoding capacity of HES5 oscillations and correlates with interneuron versus motor neuron cell fate. Thus, HES5 undergoes complex changes in gene expression dynamics as cells differentiate.Publisher PDFPeer reviewe

    Multimorbidity and comorbidity in the Dutch population - data from general practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multimorbidity is increasingly recognized as a major public health challenge of modern societies. However, knowledge about the size of the population suffering from multimorbidity and the type of multimorbidity is scarce. The objective of this study was to present an overview of the prevalence of multimorbidity and comorbidity of chronic diseases in the Dutch population and to explore disease clustering and common comorbidities.</p> <p>Methods</p> <p>We used 7 years data (2002–2008) of a large Dutch representative network of general practices (212,902 patients). Multimorbidity was defined as having two or more out of 29 chronic diseases. The prevalence of multimorbidity was calculated for the total population and by sex and age group. For 10 prevalent diseases among patients of 55 years and older (N = 52,014) logistic regressions analyses were used to study disease clustering and descriptive analyses to explore common comorbid diseases.</p> <p>Results</p> <p>Multimorbidity of chronic diseases was found among 13% of the Dutch population and in 37% of those older than 55 years. Among patients over 55 years with a specific chronic disease more than two-thirds also had one or more other chronic diseases. Most disease pairs occurred more frequently than would be expected if diseases had been independent. Comorbidity was not limited to specific combinations of diseases; about 70% of those with a disease had one or more extra chronic diseases recorded which were not included in the top five of most common diseases.</p> <p>Conclusion</p> <p>Multimorbidity is common at all ages though increasing with age, with over two-thirds of those with chronic diseases and aged 55 years and older being recorded with multimorbidity. Comorbidity encompassed many different combinations of chronic diseases. Given the ageing population, multimorbidity and its consequences should be taken into account in the organization of care in order to avoid fragmented care, in medical research and healthcare policy.</p

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Beaked whales respond to simulated and actual navy sonar

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain declaration. The definitive version was published in PLoS One 6 (2011): e17009, doi:10.1371/journal.pone.0017009.Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.The research reported here was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014-07-10988, N00014-07-11023, N00014-08-10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI-1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org)

    Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions

    Get PDF
    In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2−/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2−/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2−/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.

    Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment

    Get PDF
    Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses
    corecore